Главная Обратная связь

Дисциплины:






Предельные теоремы теории вероятностей.



Содержание дисциплины.

Распределение времени по видам занятий.

Содержание разделов дисциплины.

Введение.

Предмет теории вероятностей. Исторический обзор. Интуитивные и логические предпосылки. Случайность и необходимость.

Алгебра событий и вероятность.

Первичные понятия теории вероятностей: пространство элементарных событий, алгебра и s-алгебра событий, вероятностная мера события. Аксиомы теории вероятностей и их следствия. Классическое определение вероятности. Статистическое определение вероятностей. Геометрическая вероятность. Условная вероятность и независимость событий. Теоремы сложения, умножения. Формула полной вероятности. Формула Байеса.

Случайные величины и их характеристики.

Случайная величина как измеримая функция. Функция распределения случайной величины и ее свойства. Непрерывные, дискретные и смешанные случайные величины. Плотность распределения вероятностей. Числовые характеристики случайной величины. Математическое ожидание, дисперсия, другие моменты случайной величины и их свойства. Производящие функции вероятностей.

Типовые распределения дискретных случайных величин: биномиальное, геометрическое, Паскаля, Пуассона. Пуассоновский поток событий. Основные распределения непрерывных случайных величин: равномерное, показательное (экспоненциальное), гауссовское (нормальное), распределение Вейбулла, гамма-распределение. Области их практического применения.

Многомерные случайные величины (случайные вектора).

Функция распределения и плотность распределения случайного вектора. Зависимые и независимые случайные величины. Условные законы распределения. Математическое ожидание функции случайных величин. Условное математическое ожидание. Условные характеристики случайного вектора. Корреляционный момент. Регрессия. Двумерное и многомерное нормальное распределение.

Законы распределения и числовые характеристики функций случайных величин. Законы распределения суммы, разности, произведения, частного, минимального и максимального значений двух случайных величин. Композиция законов распределения. Распределения c2, Стьюдента, Фишера. Получение случайных величин с заданным законом распределения. Линейное преобразование нормального вектора.

Комплексные случайные величины. Характеристические функции и их свойства. Характеристическая функция суммы случайного числа случайных слагаемых.

Предельные теоремы теории вероятностей.

Закон больших чисел. Неравенство Чебышева и его обобщения. Понятия сходимости по вероятности и в среднеквадратическом последовательности случайных величин. Теоремы Чебышева, Маркова, Хинчина, Бернулли, Пуассона.

Центральная предельная теорема для суммы независимых, одинаково распределенных случайных величин. Теорема Муавра-Лапласа. Центральная предельная теорема в условиях Ляпунова и Линдеберга. Применение центральной предельной теоремы для оценки отклонения среднего арифметического от математического ожидания и частоты от вероятности.

Основные понятия выборочного метода.

Методы статистического описания результатов наблюдений. Выборка и способы ее представления. Выборочные статистики и их характеристики.





sdamzavas.net - 2018 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...