Главная Обратная связь

Дисциплины:






Строение молекулы метана



 

Приведенная структурная формула метана не отражает пространственного строения молекулы. Для рассмотрения этого строения необходимо вспомнить о формах электронных облаков и электронном строении атома углерода. Электронное строение атома углерода изображается следующим образом: 1s22s22p2 или схематически

 

 

Как видно, на внешней оболочке имеются два неспаренных электрона, следовательно углерод должен быть двухвалентен. Однако в подавляющем большинстве случаев углерод в органических соединениях четырехвалентен. Это связано с тем, что при образовании ковалентной связи атом углерода переходит в возбужденное состояние, при котором электронная пара на 2s- орбитали разобщается и один электрон занимает вакантную p-орбиталь. Схематически:


––®

Предельные углеводороды - это углеводороды, в молекулах которых имеются только простые (одинарные) связи ( -связи). Предельными углеводородами являются алканы и циклоалканы.

Атомы углерода в предельных углеводородах находятся в состоянии sp3-гибридизации.

Алканы - предельные углеводороды, состав которых выражается общей формулой CnH2n+2. Алканы являются насыщенными углеводородами.

19…

Нафтены (циклопарафины) — алициклические насыщенные углеводороды, по химическим свойствам близки к предельным углеводородам. Входят в состав нефти. В нефтехимической промышленности Нафтены являются источником получения ароматических углеводородов путем каталитического крекинга:

Наибольшее практическое значение приобрел циклогексан для синтеза капролактама, адипиновой кислоты и других соединений, используемых в производстве синтетического волокна.

 

20…

Ароматические углеводороды (арены) - углеводороды, в молекулах которых есть одно или несколько бензольных колец. Состав аренов с одним бензольным кольцом отвечает общей формуле CnH2n-6.

В молекуле простейшего арена - бензола (C6H6) - -связи образуют единую делокализованную сопряженную (ароматическую) систему -связей.

Строение молекулы простейшего арена - бензола - может быть передано структурными формулами различных типов:

Основой названия замещенного производного бензола является слово "бензол". Атомы в бензольном кольце нумеруются, начиная от старшего заместителя к младшему. Пример: 1-метил-2-этилбензол, а не 1-этил-2-метилбензол. Если заместители одинаковы, то нумерацию проводят по самому краткому пути. Пример: 1,3-диметилбензол, а не 1,5-диметилбензол.

Приставки орто-, мета-, пара- (от греческого ортос - прямой, мета - после, через, между, пара - против, возле, мимо) в названиях органических веществ (сокращенно: о-, м-, п-) используются для указания взаимного расположения двух заместителей в бензольном кольце.



Физические свойства бензола: бесцветная нерастворимая в воде жидкость со своеобразным запахом, температура плавления 5,4oС, температура кипения 80,1oС, плотность 0,88 г/см3. Пары бензола ядовиты.

21,22,23…

Каталитический крекинг — термокаталитическая переработка нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов.

Каталитический крекинг — один из важнейших процессов, обеспечивающих глубокую переработку нефти. Внедрению каталитического крекинга в промышленность в конце 30-х гг. 20 в. (США) способствовало создание эффективного с большим сроком службы катализатора на основе алюмосиликатов (Э. Гудри, 1936 г). Основное достоинство процесса — большая эксплуатационная гибкость: возможность перерабатывать различные нефтяные фракции с получением высокооктанового бензина и газа, богатого пропиленом, изобутаном и бутенами; сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом, гидроочисткой, адсорбционной очисткой, деасфальтизацией и т. д. Такой универсальностью объясняется весьма значительная доля каталитического крекинга в общем объёме переработки нефти.

Условия процесса

  • Реактор

Кратность циркуляции катализатора к сырью — 10:1 (для установок с лифт-реактором), Температура — 510—540 °C, Давление — 0,5-2 атм

  • Регенератор

Температура — 650—700 °C, Давление — 1-3 атм

Назначение – получение дополнительных количеств светлых нефтепродуктов – высокооктанового бензина и дизельного топлива – разложением тяжелых нефтяных фракций в присутствии катализатора.

Сырье и продукция. В качестве сырья чаще всего используется вакуумный дистиллят, получаемый при первичной перегонке нефти, а также газойли коксования, термического крекинга и гидрокрекинга.

Продукцией установки каталитического крекинга являются:

  • Углеводородный газ – содержит 80-90% предельных и непредельных углеводородов С3 - С4, направляется для разделения на газофракционирующие установки;
  • Бензиновая фракция (НК-1950С) – используется как компонент автомобильного и авиационного бензина; характеристика: плотность r204= 0,720?0,770, октановое число 87-93 (исследовательский метод), содержание углеводородов в %(масс.): ароматические – 20-30, непредельные – 8-15, нафтеновые – 7-15, парафиновые – 45-50;
  • Легкий газойль (фракция 195-2800С) – применяется как компонент дизельного и газотурбинного топлива; характеристика: плотность r204= 0,880?0,930, температура застывания от -550С до -650С, цетановое число 40-45, иодное число 7-9;
  • Фракция 280-4200С – используется при получении сырья для производства технического углерода; характеристика: плотность r204= 0,960?0,990, температура застывания от 00С до 50С, коксуемость – ниже 0,1%; йодное число 3-5;
  • Тяжелый газойль (фракция выше 4200С) – используется как компонент котельного топлива; характеристика: плотность r204= 1,040?1,070; температура застывания от 200С до 250С, коксуемость – 7-9%.

Катализаторы. На российских установках каталитического крекинга используются синтетические алюмосиликатные катализаторы аморфного и цеолитсодержащего типа.

Технологическая схема. На российских НПЗ и заводах б. СССР эксплуатируются установки каталитического крекинга с реактором и регенератором непрерывного действия двух типов:

  • с плотным слоем циркулирующего шарикового катализатора, реактором и регенератором непрерывного действия;
  • с псевдоожиженным слоем циркулирующего микросферического катализатора, реактором и регенератором непрерывного действия.

Технологический режим. Ниже приводятся показатели технологического режима установки каталитического крекинга с микросферическим цеолитсодержащим (I) и шариковым аморфным (II) катализатором:

  I I I
Температура,0С    
в реакторе 490-505 470-485
в регенераторе 590-670 590-650
низа колонны К-1
Давление, кгс/см2    
в реакторе 0,6-2,4 0,7-0,8
в регенераторе 2,4 2,0
Кратность циркуляции катализатора 6-8 1,8-2,5
Содержание остаточного кокса в катализаторе на выходе из регенератора, % 0,15 0,6-0,8

 

24….

Процесс алкилирования направлен на получения высокооктановых компонентов автомобильного бензина из непредельных углеводородных газов. В основе процесса лежит реакция соединения алкена и алкана с получением алкана с числом атомов углерода равным сумме атомов углерода в сходном алкене и алкане. Поскольку наибольшим октановым числом обладают молекулы алканов с изо-строением, то молекулы исходного сырья тоже должны иметь изо-строение. В нефтепереработке наибольшее распространение получило сырье алкилирования бутан-бутиленовая фракция (ББФ), которая получается при в процессе каталитического крекинга. Основной компонент ББФ изо-бутан и бутилен.

Основные реакции:

  1. изо-бутан + изо-бутилен = изо-октан (2,2,4-триметилпентан) (Октановое число — 100 ед.)
  2. изо-бутан + бутилен-2 = изо-октан (2,2,3-триметилпентан) (ОЧМ < 100)
  3. изо-бутан + изо-бутилен = изо-октан (2,2,3,3-тетраметилбутан) (ОЧМ>100)

Побочные реакции из-за примесей пропилена и нормального бутелена

  1. изо-бутан + пропилен = изо-гептан (2,2-диметилпентан) (ОЧМ<<100)

Режим работы реактора

Параметр Значение
Температура, °C 0 — 10
Давление, МПа 0,6 — 1,0
Мольное соотношение изобутан:бутилены 6 — 12
Катализатор Серная кислота
Объемное соотношение между у/в и сернокислотной фазой 1 — 1,5
Время контакта сырья с катализатором, мин. 20 −30

Октановое число смеси продуктов реакции (алкилат) около 95, следует отметить важную особенность равенства октановых чисел по моторному методу и исследовательскому. Так, например, продукт каталитического риформинга (риформат) имеет исследовательское октановое число 95 и моторное 85, в то время как алкилат 95 и 92 соответственно. Это обстоятельство делает его наиболее ценным компонентом товарных бензинов. Однако его себестоимость так же очень велика. К тому же есть конкурирующий процесс использования ББФ — производство МТБЭ.

 

25…

Каталитический риформинг (от англ. to reform — переделывать, улучшать) — каталитическая ароматизация (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов), относящаяся наряду с каталитической изомеризацией лёгких алканов к гидрокаталитическим процессам реформирования нефтяного сырья. Каталитическому риформингу подвергают прямогонные гидроочищенные тяжёлые бензины с пределами выкипания 80—180°С.

Основными целями риформинга являются:

  • повышение октанового числа бензинов с целью получения неэтилированного высокооктанового бензина
  • получение ароматических углеводородов (аренов)
  • получение ВСГ для процессов гидроочистки, гидрокрекинга, изомеризации и т. д.

Образование ароматических углеводородов происходит в результате следующих реакций:

  • дегидрирование шестичленных циклоалканов:
    • циклогексан в бензол
    • метилциклогексан в толуол
    • диметилциклогексан в ксилол
  • дегидроизомеризация циклопентанов
  • дегидроциклизация парафиновых углеводородов

Побочные реакции:

  • гидрокрекинг с образованием жирных газов;
  • коксообразование

 

26…

Термический крекинг происходит при температуре 720-750К и давлении 2-5 МПа.

Наряду с расщеплением тяжелых углеводородов при термическом крекинге протекают процессы синтеза, которые обуславливают создание высокомолекулярных продуктов. При термическоми крекинге образуются также, отсутствующие в природной нефти, химически недостаточно устойчивые непредельные углеводороды. Эти два фактора являются основными недостатками термического крекинга и причиной того, что этот процесс заменяется другими, более прогрессивными методами нефтепереработки, в частности каталитическим крекингом.

Термический крекинг, высокотемпературная переработка нефти и ее фракций с целью получения, как правило, продуктов меньшей молярной массы - легких моторных и котельных топлив. непредельных углеводородов, высокоароматизированного сырья, кокса нефтяного.

Рис. 1. Цепь реакций при термическом крекинге парафиновых углеводородов (по Тиличееву и Немцову).

Физико-химические основы процесса.Направление термического крекинга зависит от природы углеводородного сырья, его молекулярной массы и условий проведения процесса. Термический крекинг протекает в осном по цепному радикальному механизму (см. Пиролиз нефтяного сырья) с разрывом связей С—С в молекулах парафиновых (С5 и выше), нафтеновых, алкилароматических и высококипящих непредельных углеводородов нефтяного сырья и связи С—H в низкомолекулярных парафиновых и др. углеводородах (рис. 1). Одновременно с разрывом связей происходят реакции полимеризации (непредельные и циклопарафиновые углеводороды) и конденсации (циклизации; непредельные, нафтено-и алкилароматические и другие углеводороды), приводящие к образованию смолисто-асфальтенового крекинг-остатка и кокса. Важнейшими параметрами, определяющими направление и скорость протекания термического крекинга, являются температура, продолжительность и давление. Процесс начинает в заметной степени протекать при 300-350 °С и описывается кинетическим уравнением первого порядка. Температурная зависимость константы скорости подчиняется уравнению Аррениуса. Изменения давления влияют на состав продуктов процесса (напр., на выход остаточных фракций и кокса) вследствие изменения скоростей и характера вторичных реакций полимеризации и конденсации, а также объема реакц. смеси.

 

27….





sdamzavas.net - 2017 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...