Главная Обратная связь

Дисциплины:






ЗАДАНИЕ 6 . Постановка задачи математического программирования



В процессе принятия решений часто необходимо вербальное описание проблемы преобразовать в формальное описание задачи и затем использовать известный метод её решения.

Для того, чтобы возникла задача, необходимо определить допустимую область решений, определить факторы, влияющие на это решение. Для формализации задачи нужно определить количественные зависимости между факторами и результатами; в совокупности они образуют ограничения на деятельность системы. При постановке экстремальной задачи, среди ограничений выделяют одно или несколько и используют их в качестве критерия (простого или сложного, сконструированного из нескольких).

В результате постановка задачи математического программирования сводится к формированию ограничений деятельности системы, которые затем разделяются на критерии и ограничения. Критерий позволяет оценить решения и определить лучшее из них.

Постановка задачи сводится к переводу словесного описания ситуации в формализованное, в котором определяется переменная, органичения и целевая функция.

Постановка любой задачи заключается в том, чтобы перевести их словесное описание в формальное. Широкое распространение получили модели математического программирования.

Задача математического программирования состоит в нахождении отпимального (максимального или минимального) значения целевой функции, переменные которой принадлежат некоторой области допустимых значений. Наиболее наглядными являются задача линейного программирования (ЗЛП) и транспортная задача.

ЗЛП состоит в определении минимального или максимального значения целевой функции; целевая функция и ограничения и представляют собой линейные неравенства.

(F(х) = ) ®Max

i = 1….k

xj ³ 0,

aij , bi, ci - заданные постоянные величины

Чтобы решить эту задачу, нужно найти такой вектор Х = (x1, x2,… xк)

(набор переменных величин xj), чтобы он доставлял максимальное значение целевой функции F (х)

 

Пример постановки ЗЛП.

На предприятии изготавливается два вида изделий из трёх видов материалов

aijрасход материала вида i на одно изделие j.

bi - запас материала вида i

ci - прибыль от одного изделия вида i.

 





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...