Главная Обратная связь

Дисциплины:






ПАТОГЕНЕЗ ЛУЧЕВОЙ БОЛЕЗНИ



ОСНОВНЫЕ ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

ЯДЕРНОГО ВЗРЫВА. ЕДИНИЦЫ ДОЗ

ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

 

В результате ядерного взрыва образуются различные ви­ды ионизирующих излучений, в частности, У-излучение, поток нейтронов, β-частицы и относительно небольшое количество а-частиц.

Нейтроны и часть общего потока У-лучей испускаются мгновенно в момент ядерного взрыва. Это так называемая пер­вичная мгновенная проникающая радиация. Время действия данного потока У-лучей около 10 секунд, а потока нейтронов - несколько десятых долей секунды. Возникающий при взрыве поток β- и а-частиц ввиду их малой проникающей способности и небольшого пробега в воздухе не оказывает общего воздейст­вия. Помимо мгновенной проникающей радиации, в результате ядерного взрыва имеет место еще остаточная радиация (или так называемое радиоактивное заражение местности).

На местности, зараженной продуктами ядерного взрыва, и на следе радиоактивного облака поражения людей могут воз­никать в результате внешнего воздействия смешанного V-излучения, и β-излучения, а также в результате попадания ра­дионуклидов на кожные покровы и внутрь организма (инкор­порация).

Величина дозы V -излучения выражается в рентгенах. 1 рентген - такая доза У -излучения, при которой в 1 см3 сухого воздуха при температуре 0° и давлении 760 мм рт. ст. образует­ся 2,08 х 109 пар ионов, несущих одну электростатическую единицу заряда. Поглощенная доза У-нейтронного излучения выражается в радах. 1 Рад - единица поглощенной дозы излу­чения, равная 100 эргам на 1 грамм облучаемого вещества. В системе СИ поглощенная доза выражается в Греях. 1 грей =100 радам - 1дж/кг. В литературе может встретиться еще такая единица, как Зиверт. Зиверт - это единица, в которой выража­ется эквивалентная доза. Эквивалентная доза - это поглощен­ная доза с учетом повреждающей способности данного вида излучения. Так, например, а-излучение считается в 20 раз опаснее всех других видов излучения.

 

ПАТОГЕНЕЗ ЛУЧЕВОЙ БОЛЕЗНИ

 

Патогенез лучевой болезни сложен и не во всем еще до конца изучен. Выделяют первичный и вторичный радиобиоло­гический эффект. Первичный радиобиологический эффект - это физико-химические и биохимические изменения на молеку­лярном и субмолекулярном уровне, которые возникают в ре­зультате действия ионизирующих излучений. Вторичный ра­диобиологический эффект - это изменения биологических про­цессов в клетках, ведущие к нарушению функции тканей, органов, систем и, в конечном итоге, к формированию собственно лучевой болезни.

Для всех видов ионизирующих излучений основным ме­ханизмом действия является образование ионов и возбуждение атомов и молекул.



В основе первичного радиобиологического эффекта ле­жат два механизма:

1) прямое повреждающее действие ионизирующих излу­чений на биологические молекулы;

2) непрямое повреждающее действие.

Прямое повреждающее действие возникает в результате непосредственного взаимодействия ионизирующей частицы или гамма кванта с биологической молекулой. При этом по­глощенная энергия вызывает возбуждение молекулы, ее иони­зацию, может мигрировать по ней, реализуясь в наиболее уяз­вимых местах, разрывая внутриклеточные связи.

Наиболее вероятной мишенью прямого повреждающего действия будут служить гигантские макромолекулы, к которым в первую очередь относятся молекулы ДНК. В результате воз­никают структурные изменения ДНК. Прямому повреждению подвержены также макромолекулы ферментов, липопротеидов, гиалуроновая кислота, которая подвергается деполимеризации.

Непрямое действие обусловлено химическими вещества­ми, образующимися в результате первичной ионизации моле­кул воды (радиолиза воды). При этом образуются так называе­мые активные свободные радикалы и перекиси (Н, ОН, О', НО2, Н2О2), которые обладают очень высокой биологической актив­ностью и способны вызвать окисление по любым связям. Наи­более подвержены их действию соединения, содержащие 5Н-группы, например, тиоловые ферменты. Свободные радикалы и перекиси способны изменять также и химическое строение ДНК. Окислению подвергаются также ненасыщенные жирные кислоты и фенолы, в результате чего образуются липидные и хиноновые радиотоксины. Они, в свою очередь, тоже угнетают синтез нуклеиновых кислот, обладают мутагенным действием на ДНК, изменяют активность ферментов, реагируют с внутриклеточными белково-липидными мембранами и повреждают их. В конечном итоге это ведет к нарушению функции различ­ных органоидов клетки. В частности, в связи с повреждением мембран лизосом из них выделяются различные гидролитиче­ские ферменты - липазы, фосфолипаза, протеазы, эластаза, коллагеназа, фосфатазы и др., а это еще больше усиливает де­струкцию клетки. В мембранах митохондрий нарушается окис­лительное фосфорилирование, следствием чего является нару­шение образования энергии. В результате действия всех ука­занных выше факторов наблюдается еще большее нарушение деятельности генетического аппарата (генные мутации, хромо­сомные аберрации), нарушение синтеза нуклеиновых кислот и ядерных белков, уменьшение митозов.

В конечном итоге возможны следующие результаты по­вреждающего действия ионизирующих излучений:

1) гибель клеток, находящихся в покое (интерфазная ги­бель);

2) подавление митотической активности, в результате че­го происходит опустошение ткани, поскольку не восполняется естественная убыль клеток;

3) нарушение хромосомного аппарата, что обусловливает так называемую генетическую гибель клеток.

Согласно закону Бергонье и Трибондо (1906 г.), радиопоражаемость отдельных тканей находится в пропорциональной зависимости от их митотической активности и обратно про­порциональна степени дифференциации клеток.

Радиопоражаемость тканей в порядке убывания следую­щая: лимфоидная ткань, гемопоэтическая ткань, эпителий ки­шечника, половых желез, кожи, хрусталик, эндотелий сосудов, серозные оболочки, паренхиматозные органы, мышцы, соеди­нительная ткань, хрящи, кости, нервная ткань. Нервная ткань в смысле радиопоражаемости, т е, по возможности возникнове­ния грубых структурных нарушений, стоит на последнем мес­те, однако в функциональном смысле она является высоко ра­диочувствительной. Буквально через несколько секунд после облучения нервные рецепторы подвергаются раздражению веществами, образующимися в результате радиолиза и распада тканей. Импульсы поступают в измененные непосредственным облучением нервные центры, нарушая их функциональное со­стояние. В результате этого нарушается нервная регуляция, что способствует развитию дистрофических явлений в тканях и на­рушению компенсаторных процессов.

Под влиянием ионизирующих излучений возникают зна­чительные изменения функциональной активности эндокрин­ных желез, в первую очередь, симпатогипофизарнонадпочечниковой системы - сначала - усиление, а затем - истощение.

В конечном итоге изменения нейроэндокринной регуля­ции, возникающие при облучении, вносят существенный вклад в поражение органов и систем.

Таковы общие механизмы, ведущие к повреждению кле­ток под влиянием ионизирующих излучений.

Однако в зависимости от вида облучения, длительности, геометрии и, главным образом, дозы облучения будет наблю­даться различное соотношение интерфазной гибели клеток, на­рушения митотической активности и генетической гибели кле­ток в различных тканях. Это, в свою очередь, будет определять различные ведущие симптомокомплексы (синдромы) в клинике лучевой болезни и, в конечном итоге, ту или иную форму луче­вой болезни.

 





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...