Главная Обратная связь

Дисциплины:






Формула Остроградского



Фо́рмула Острогра́дского — математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:

то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму , равен потоку вектора через поверхность , ограничивающую данный объём.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.

В работе Остроградского формула записана в следующем виде:

где и — дифференциалы объёма и поверхности соответственно. В современной записи — элемент объёма, — элемент поверхности. — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью.

Обобщением формулы Остроградского является формула Стокса для многообразий с краем.

История

Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830 гг.) на примере задач электродинамики.

В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году. С помощью данной формулы Остроградский нашёл выражение производной по параметру от -кратного интеграла с переменными пределами и получил формулу для вариации -кратного интеграла.

За рубежом формула называется формулой Гаусса или «формулой (теоремой) Гаусса—Остроградского».

 

??? 7. Работа по перемещению проводника с током в магнитном поле

 

Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор сонаправлен с . Рис. 2.17 На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо: Пусть проводник l переместится параллельно самому себе на расстояние dx. При этом совершится работа: Итак,
  , (2.9.1)  

Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.

Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.

Выведем выражение для работы по перемещению замкнутого контура с током в магнитном поле.

Рассмотрим прямоугольный контур с током 1-2-3-4-1 (рис. 2.18). Магнитное поле направлено от нас перпендикулярно плоскости контура. Магнитный поток , пронизывающий контур, направлен по нормали к контуру, поэтому .



Рис. 2.18

Переместим этот контур параллельно самому себе в новое положение 1'-2'-3'-4'-1'. Магнитное поле в общем случае может быть неоднородным и новый контур будет пронизан магнитным потоком .

Площадка 4-3-2'-1'-4, расположенная между старым и новым контуром, пронизывается потоком .

Полная работа по перемещению контура в магнитном поле равна алгебраической сумме работ, совершаемых при перемещении каждой из четырех сторон контура:

где , равны нулю, т.к. эти стороны не пересекают магнитного потока, при своём перемещение (очерчивают нулевую площадку).

.

Провод 1–2 перерезает поток ( ), но движется против сил действия магнитного поля.

.

Тогда общая работа по перемещению контура

или

  , (2.9.2)  

здесь – это изменение магнитного потока, сцепленного с контуром.

Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока, сцепленного с этим контуром.

Элементарную работу по бесконечно малому перемещению контура в магнитном поле можно найти по формуле

  , (2.9.5)  

Выражения (2.9.1) и (2.9.5) внешне тождественны, но физический смысл величины dФ различен.

Соотношение (2.9.5), выведенное нами для простейшего случая, остаётся справедливым для контура любой формы в произвольном магнитном поле. Более того, если контур неподвижен, а меняется , то при изменении магнитного потока в контуре на величину dФ, магнитное поле совершает ту же работу

 

Сила Лоренца

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.

Со стороны магнитного поля

Сила , действующая на заряженную частицу, движущуюся в магнитном поле:

СГС СИ

где:

§ — электродинамическая постоянная;

§ — заряд частицы;

§ — скорость частицы;

§ — магнитная индукция поля.

Полная сила

При движении заряженной частицы в электромагнитном поле на неё будут действовать и электрическое, и магнитное поле, а полная сила есть сумма сил со стороны первого и второго:

 

СГС СИ

где:

§ — напряжённость электрического поля;

§ — сила, действующая со стороны электрического поля.

Ковариантная запись

4-сила выражается через вектор 4-скорости частицы по формуле

, где — 4-сила, q — заряд частицы, — тензор электромагнитного поля, — 4-скорость.

Частные случаи

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

СГС СИ

 

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости , намного меньшей скорости света, круговая частота не зависит от :

СГС СИ

 

Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол , то траекторией движения частицы является винтовая линия с радиусом и шагом винта :

СГС СИ
, ,

Применение силы Лоренца

В электроприборах

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД генераторах.





sdamzavas.net - 2017 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...