Главная Обратная связь

Дисциплины:






Электронная теория дисперсии света

Дисперсия – зависимость показателя преломления вещества от длины волны.

- дисперсия вещества

 

В электронной теории дисперсия рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

. Для оптической области спектра и .

Диэлектрическая проницаемость, по определению, равна: .

Следовательно . Из этого следует что имеет место электронная поляризация – вынужденные колебания электронов под воздействием электрической составляющей поля волны. Можно считать что вынужденные колебания совершают только внешние (оптические) электроны. Если концентрация атомов равна , то . Тогда . Необходимо определить смещение электрона под действием поля волны.

Уравнение вынужденных колебаний электрона:

Его решение: , где .

 

Подставляя в , получаем:

Поглощение света

Свет, проходя через любое вещество, в той или иной мере в нем поглощается. Обычно поглощение носит селективный характер, т. е. свет различных длин волн поглощается различно. Так как длина волны определяет цвет света, то, следовательно, лучи различных цветов, вообще говоря, поглощаются в данном веществе по-разному.

 Прозрачными неокрашенными телами являются тела, дающие малое поглощение света всех длин волн, относящихся к интервалу видимых лучей. Так, стекло поглощает в слое толщиной в 1 см лишь около 1 % проходящих через него видимых лучей. То же стекло сильно поглощает ультрафиолетовые и далекие инфракрасные лучи.

 Цветными прозрачными телами являются тела, обнаруживающие селективность поглощения в пределах видимых лучей.

Например, "красным" является стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые, синие и фиолетовые.

Если на такое стекло падает белый свет, представляющий собой смесь волн различных длин, то через него пройдут лишь более длинные волны, вызывающие ощущение красного цвета, более же короткие волны будут поглощены.

При освещении того же стекла зеленым или синим светом оно покажется "черным", так как стекло поглощает эти лучи.

 С точки зрения теории упруго связанных электронов поглощение света вызвано тем, что проходящая световая волна возбуждает вынужденные колебания электронов. На поддержание колебаний электронов идет энергия, которая затем переходит в энергию других видов.

 Если в результате столкновений между атомами энергия колебаний электронов переходит в энергию беспорядочного молекулярного движения, то тело нагревается.



 Поглощение света можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

 Пусть через однородное вещество распространяется пучок параллельных лучей (рис. ).

 Выделим в этом веществе бесконечно тонкий слой толщиной dl, ограниченный параллельными поверхностями, перпендикулярными к направлению распространения света.

 Плотность потока энергии и изменится при прохождении лучей через этот слой на величину −du. Естественно положить это уменьшение −du пропорциональным значению самой плотности потока энергии в данном поглощающем слое и его толщине dl:

−du = kudl. (1)

 

 Коэффициент k определяется свойствами поглощающего вещества, он носит название коэффициента поглощения. Постоянство коэффициента k указывает на то, что в каждом слое поглощается одна и та же доля потока, дошедшего до слоя.

 Для получения закона убывания плотности потока энергии в слое конечной толщины l перепишем выражение (1) в виде:

du/u = -kdl

 

и затем проинтегрируем его в пределах от 0 до l:

0l∫(du/u) = −k0l∫dl.

 

Пусть в начале слоя (l = 0) плотность потока равна u0. Обозначим через u то значение, которое она приобретает, когда поток пройдет толщу вещества l. Тогда в результате интегрирования получим:

lnu − lnuo = −kl или ln(u/uo) = −kl,

 

откуда

u = uoe−kl, (2)

 

где е − основание натуральных логарифмов.

 Чем больше коэффициент поглощения k, тем сильнее поглощается свет. При l = 1/k, по (2):

u = uo/e = uo/2,72;

 

таким образом, слой, толщина которого равна 1/k, ослабляет плотность потока энергии в 2,72 раза.

 Для различных веществ численное значение коэффициента поглощения k колеблется в весьма широких пределах. В видимой области для воздуха при атмосферном давлении k приблизительно равно 10−5 см−1 для стекла k = 10−2 см−1, а для металлов k есть величина порядка десятка тысяч. Для всех веществ коэффициент поглощения k в той или иной мере зависит от длины волны.

 Тонированное окно может поглощать, например видимый свет, от 0 до 100 %. К примеру, тонировка окон в квартире зачастую становится очень простым и удобным выходом из положения, если окна выходят на солнечную сторону − таким образом вредные в больших количествах ультрафиолетовые лучи не проникают в квартиру. Вследствие этого жарким летом в помещении сохраняется приятная прохлада, а предметы интерьера не теряют своих красок из-за яркого солнца.

 На рис. представлена зависимость lgk от длины волны λ для газообразного хлора при 0 °С и атмосферном давлении. Как видно, в фиолетовой области коэффициент велик, затем он круто спадает в желто-зеленой области и снова возрастает в красной.

 Опыт показывает, что при поглощении света веществами, растворенными в прозрачном растворителе, поглощение пропорционально числу поглощающих молекул на единицу длины пути светового луча в растворе. Так как число молекул, приходящихся на единицу длины, пропорционально концентрации раствора С, то коэффициент поглощения k пропорционален С, откуда можно положить k = хС, где х − новый постоянный коэффициент, не зависящий от концентрации раствора, а определяемый лишь свойствами молекул поглощающего вещества. Подставляя это значение k в формулу поглощения (2), получим

u = uoe−xCl. (3)

 Утверждение, что коэффициент х не зависит от концентрации раствора, носит название закона Беера. Этот закон выполняется при условии, что наличие соседних молекул не меняет свойств каждой данной молекулы. При значительных концентрациях раствора взаимное влияние молекул сказывается, и тогда закон Беера перестает выполняться. В тех случаях, когда он имеет место, соотношение (3) позволяет определять концентрацию раствора по степени поглощения света в растворе.

 Кроме рассмотренного „истинного" поглощения, при котором энергия световых волн переходит в энергию других видов, возможно убывание плотности потока энергии в пучке лучей за счет рассеяния энергии в стороны.

Эффект Доплера

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн (например, звука), распространяющихся в какой-либо среде, нужно принимать во внимание движение как источника, так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, в вакууме имеет значение только относительное движение источника и приёмника[1].

Эффект был впервые описан Кристианом Доплером в 1842 году.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение, имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется — длина волны увеличивается: ,

где — частота, с которой источник испускает волны, — скорость распространения волн в среде, — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

.(1)

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

 

,(2)

где — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:





sdamzavas.net - 2017 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...