Главная Обратная связь

Дисциплины:






Философский смысл волновой функции



Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности. То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, — это проблема самой сути научного метода познания мира. Если представить себе бильярдный стол, закрытый непроницаемой крышкой, и единственным способом исследования вопроса, есть ли на нём бильярдные шары, предположить закатывание в стол других шаров, то мы и получаем ту самую проблему, для решения которой привлечён метод квантовой механики. Пока вброшенный шар проходит сквозь стол без изменения траектории, предсказуемо, мы можем сделать вывод о том, что на траектории шара других шаров нет. Если в результате взаимодействия шаров на столе мы получаем выкатившиеся несколько шаров с различными конечными импульсами и точками, в которых шары покинули стол, то мы можем лишь предполагать о том, каким образом происходило взаимодействие в системе. Если же лузы в бильярдном столе ограничивают возможность шаров покидать стол (энергетический барьер), то система запутывается ещё больше. Подобный пример с бильярдом очень наглядно демонстрирует те трудности, с которыми сталкиваются исследователи, разрабатывая инструменты квантовой механики.

 

61 Уравнение Шрёдингера

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из фундаментальных законов физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае. Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классической теорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.



Формулировка

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

Случай трёхмерного пространства

В трёхмерном случае пси-функция является функцией трёх координат и в декартовой системе координат заменяется выражением

тогда уравнение Шрёдингера примет вид:

где , — постоянная Планка; — масса частицы, — потенциальная энергия в точке

Стационарное уравнение Шрёдингера

Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда не является функцией времени, можно записать в виде:

где функция должна удовлетворять уравнению:

которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).

Выражение (2) является лишь частным решением зависящего от времени уравнения Шрёдингера (1), общее решение представляет собой линейную комбинацию всех частных решений вида (2). Зависимость функции от времени проста, но зависимость её от координаты не всегда имеет элементарный вид, так как уравнение (3) при одном выборе вида потенциальной функции совершенно отличается от того же уравнения при другом выборе этой функции. В действительности, уравнение (3) может быть решено аналитически лишь для небольшого числа частных типов функции .

Важное значение имеет интерпретация величины в уравнении (2). Она производится следующим путём: временна́я зависимость функции в уравнении (2) имеет экспоненциальный характер, причём коэффициент при в показателе экспоненты выбран так, что правая часть уравнения (3) содержит просто постоянный множитель . В левой же части уравнения (3) функция умножается на потенциальную энергию . Следовательно, из соображений размерности вытекает, что величина должна иметь размерность энергии. Единственной величиной с размерностью энергии, которая постоянна в механике, является полная (сохраняющаяся) энергия системы; таким образом, можно предполагать, что представляет собой полную энергию. Согласно физической интерпретации уравнения Шрёдингера, действительно является полной энергией частицы при движении, описываемом функцией .

Получение уравнения Шрёдингера предельным переходом

Существует способ получить уравнение Шрёдингера, используя предельный переход к классической механике.

Рассмотрим оператор

Поскольку интеграл , взятый по всему пространству, есть величина постоянная (для нормированной функции равная 1) то:

(Звездочкой будем обозначать комплексное сопряжение) Подставляя сюда наш оператор (оператор со звездочкой — комплексно сопряженный, с тильдой — транспонированный):

Иначе:

Поскольку это равенство должно выполняться для произвольной функции , то отсюда следует, что тождественно , то есть оператор эрмитов. Чтобы выяснить смысл этого оператора, подействуем им на функцию (функция квазиклассической системы, — медленно меняющаяся функция, -действие):

Пренебрегая первым членом в силу его малости получаем:

То есть — собственное значение нашего оператора. Но эта производная есть не что иное, как классическая энергия системы (функция Гамильтона). Поэтому этот оператор называют гамильтонианом или гамильтоновым оператором.

Мы не будем здесь приводить вывод оператора импульса (точнее, оператора величины, сохраняющейся в силу однородности пространства), приведем лишь результат:

Или в компонентах (оси …):

В том, что это есть оператор величины переходящей в классический импульс можно убедиться, тем же методом, что был предложен для гамильтониана. Можно показать, что сохраняющаяся со временем величина, в частности импульс, измерима одновременно с энергией. Поэтому мы предположим, что соотношение между операторами импульса и энергии совпадает с классическим соотношением между соответствующими величинами:

Но:

Таким образом:





sdamzavas.net - 2017 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...