Главная Обратная связь

Дисциплины:






Расчет изгибаемых элементов при ограниченном развитии пластических деформаций



Для изгибаемых элементов (балок), у которых пролет превышает высоту поперечного сечения (в 5 и более раз) изменение деформаций по высоте сечения происходит по линейному закону, напряжения распределяются только до предела текучести ƠT (рис.2.1).

Напряжения в точках, находящихся на расстоянии “y” от нейтральной оси, определяются по формуле Ơ = М y / Ix , где - изгибающ. мом. в рассматриваемом сечении балки; Ix - момент инерции сечения.

Максимальное напряжение возникает когда : Ơmax. = М(h/2)/Ix. Отношение момента инерции Ix к расстоянию от нейтральной оси до крайней точки сечения называется моментом сопротивленияWx = Ix(2/h),тогда Ơmax = M/Wx..

 
 

Для проверки прочности изгибаемых элементов, работающих в пределах упругих деформаций, необходимо, чтобы максимальные нормальные и касательные напряжения в балке от расчетной нагрузки не превосходили соответствующих расчетных сопротивлений.

Рис.2.1. Изменение эпюры напряж-й в изгибаемом эл-те при развитии пластич-х деф-ций в матер.

; (2.10)

τ = Q S /I t≤ Rs c.

где и - максимальный момент и поперечная сила в балке от расчетной нагрузки; - момент сопротивления нетто поперечного сечения балки, в случае несимметричного сечения балки выбирается Wnmin = Ix / y max ; - статический момент сдвигающейся части сечения относительно нейтральной оси; I - момент инерции сечения балки; - толщина стенки.

По второму предельному состоянию наибольший прогиб балки от нагрузки при эксплуатации сравнивается с предельной величиной указанной в нормах, либо в задании на проектирование.

Величина прогиба зависит от расчетной схемы балки, а предельный прогиб – от назначения. Например, для главной балки рабочей площадки промздания, имеющей один пролет и шарнирные опоры, загруженной равномерно распределенной нагрузкой, проверка прогиба производится по формуле:

5

fmax = ----- (qn l4 / E I) ≤ l / 400 (2.11)

384

где - максимальный прогиб балки; - нормативная нагрузка на балку; - прогиб балки; E I- изгибная жесткость балки; 400 – норма прогиба балки.

Формула для проверки прочности изгибаемых элементов при наличии пластических деформаций (пластический шарнир) получается из выражения (2.10) путем замены на , т.е.

M / (c Wn) ≤ Ry γc или M / Wn ≤ cRy γc (2.12).

Сравнивая это выражение с (2.10) видим, что формально учет пластических деформаций сводится к повышению расчетного сопротивления умножением на величину “c”, коэффициент, характеризующий резерв несущей способности изгибаемого элемента, обусловленный пластической работой металла, и определенный по формуле для балок двутаврового сечения, как наиболее распространенного в изгибаемых элементах



, (2.13)

где - отношение площадей поперечного сечения пояса и стенки балки.

Для прокатных двутавров различных типов , чему соответствует значение с = 1,1 .

Для составных двутавров (рис.2.2,в). коэффициент“c” вычисляется по формуле (2.13).

Для прямоуг. сеч., когда площадь поясов балки можно приравнять к нулю – с = 1,5 (рис.2.2,б).

Устремляя площадь стенки к нулю (рис.2.2,е) из двутавра получаем расчетные сечения фермы или балки с гибкой стенкой, тогда с = 1.

Наибол. пластическим резервом будет обладать балка с попер. сечением (см. рис.2.2,а), для нее с = 2.

Практически выбор формы поперечного сечения изгибаемых элементов зависит от многих факторов, среди кот-х главным явл-ся расход металла, так как его стоимость сост. 80% общей ст-сти к-ции.

Кроме нормальных напряжений Ơ в балках возникают и касательные напряжения τxy, зависящие от поперечной силы и локальных напряжений Ơy в местах передачи на балку сосредоточенных нагрузок. Например, для балок, загруженных сосредоточенными силами по пролету (рис.2.3,а) определяющей

будет компонента Ơx. При большей сосредоточенной нагрузке на балке с малым пролетом (рис.2.3,б) определяющим будет напряжение τxy.. Распределение Ơпр

Рис.2.2. Зависимость коэффициента “c” от формы попер. сеч. изгиб.элемента

по высоте балки в упругой стадии будет существенно отличаться от предыдущего случая, а при дальнейшем увеличении нагрузки вплоть до появления пластического шарнира (Ơпр = ƠT) обусловит более развитую пластическую область вблизи нейтральной оси.

При рассмотренном многократном напряженном состоянии проверку прочности балки можно производить по формуле:

(2.14)

где 1,15 – коэффициент, учитывающий развитие пластических деформаций в балке [аналогично коэффициенту “c” в формуле (2.12)].

При изгибе относительно двух главных осей инерции поперечного сечения балки (x, y) – косом изгибе - допускается проверку прочности. производить по упрощенной формуле

Mx/(cx Wx.n.min)+My/(cy Wy.n.min) ≤ Ry γc при τ≤ 0.5Rs (2.15)

где и даются в зависимости от формы сечения (см.прил.1); - зависит от величины .

 

17. Потеря устойчивости и расчет центрально-сжатых элементов.Исчерпание несущ. сп-сти длин. гибких стержней, работающ. на осевое сж-е, происх. от потери устойч-сти (рис.2.4,а).

Поведение стержня под нагрузкой характеризуется графиком (рис.2.4,б), где вначале с ростом нагрузки стержень сохраняет прямолин. форму, с дальнейшим ростом нагрузки, когда стержень теряет свою устойч-сть и нач. выпуч-ся. Последующ. (небольшой) рост внешн. нагрузки сопровожд-ся быстрым увелич-ем поперечного прогиба f. После достижения максимальной нагрузки – второй критической силы - стержень теряет несущую способность (неустойч. сост.).

Устойчивое состояние может быть при и (точки 1 и 2). Однако при стержень может находиться в устойчивом состоянии (точка 2) и неустойчивом (т. 3) при одинак. сжимающ. силе.

Критич. сост-е м. быть при и при (точки и ). Соотв-щее критич. напряж-е будет

Ncr1 π2ΕІ π2Εί2 π2Ε

Ơсr =-------- = ----- -- = --------- = ------- (2.16)

A lo2A lo2 λ2

 

где - критическая сила равная π2ΕI /lo2 (формула Эйлера); - площадь поперечного сечения стержня; заменяя I / A получаем i = - радиус инерции; - гибкость стержня; - расчетная длина стержня; - коэффициент приведения, зависящий от способа закрепления концов стержня.

Рис.2.4. Работа центрально-сжатого стержня:

а – расчетная схема; б – зависимость между

нагрузкой и прогибом стержня

Формула справедлива при постоянном , т.е. при напряжениях , при этом . Напряжения - предел пропорциональности.

На практике гибкость центрально сжатых стержней (колонн, элементов ферм, рам и т.д.) составляет примерно половину указанных предельных.

На рис.2.5 показано влияние сеч-я стержня на критич-е напряж-я. Из приведен. данных видно, что кривые для различных сеч-й и Разной ориентации осей будут разными. Кривая для двутавра по рис.2.5,а располагается левее, а по рис.2.5,б – правее кривой, соответствующей прямоугольному сечению (рис.2.5,в).

В приведен. классич-й схеме, в кот. предполаг., что в мом.потери устойч-сти нагрузка остается постоян., тогда на выпуклой стороне стержня происход. разгрузка и материал начинает работать по упругому

закону. Однако, если деформация сжатия в процессе продольного изгиба растет или остается постоянной в каждой точке сечения стержня, т.е. разгрузки не происходит, то все сечение находится в пластическом состоянии, характеризуемом касательным модулем деформации .

 

Рис.2.5. Влияние формы поперечного сечения стержня на критические напряжения:

а – потеря устойчивости двутаврового стержня в плоскости стенки; б – то же, в

плоскости полок; в – зависимость критических напряжений от гибкости

В этом случае критическое напряжение в пластической области будет (2.17)

В строительных конструкциях встречаются обе схемы работы сжатых стержней. Например, сжатые элементы статически неопределимых систем (ферм, рам) теряют устойчивость по классической схеме - с разгрузкой. В момент потери устойчивости происходит перераспред-е усилий между эл-тами. В колоннах, работающих по статически опред. схеме, будет реализовываться вторая схема – без разгрузки.

До сих пор рассматривался идеально прямой стержень с нагрузкой, приложенной строго по оси. Однако в практике такого не существует. Конструктивное оформление концов сжатых стержней не обеспечивает идеальную центровку, поэтому эти факторы учитываются введением в расчет эквивалентного эксцентриситета сжимающей силы “ ”. Он зависит от гибкости и с ростом ее возрастает. В практических расчетах пользуются , т.е. со случайным эксцентриситетом. Тогда , (2.18)

где - коэф. устойчивости или его еще называют коэф-том предельн. изгиба при центр. сжатии.

В нормах на проектирование даются формулы и соответствующие таблицы для определения .


 





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...