Главная Обратная связь

Дисциплины:






Проблемы Теории Большого Взрыва



Как и любая теория, полностью не доказанная на практике, Теория Большого Взрыва имеет ряд недостатков и "темных пятен". В этой главе мы рассмотрим наиболее заметные бреши в обороне ее сторонников.

 

1.Сингулярность

 

Пытаясь объяснить происхождение Вселенной, сторонники Теории Большого Взрыва сталкиваются с серьезной проблемой, поскольку исходное состояние Вселенной в разработанной ими модели не поддается математическому описанию. Напомним, согласно всем существующим теориям, вначале Вселенная представляла собой точку пространства бесконечно малого объема, имевшую бесконечно большую плотность и температуру. Такое начальное состояние в принципе не может быть описано математически. Об этом состоянии ровным счетом ничего нельзя сказать. Все расчеты заходят в тупик, упираясь в стену не решаемых уравнений.

Профессор радиоастрономии Манчестерского университета Б. Лоувел писал о сингулярностях следующее: «В попытке физически описать исходное состояние Вселенной мы натыкаемся на препятствие. Вопрос в том, является ли это препятствие преодолимым. Может быть, все наши попытки научно описать исходное состояние Вселенной, заранее обречены на неудачу? Этот вопрос, а также концептуальные трудности, связанные с описанием сингулярной точки в исходный момент времени, являются одной из основных проблем современной научной мысли». Пока что это препятствие не смогли преодолеть даже самые выдающиеся ученые, разрабатывающие теории большого взрыва.

Итак, теория большого взрыва сталкивается с непреодолимыми проблемами буквально с самого начала. В научно-популярных изложениях теории большого взрыва сложности, связанные с исходной сингулярностью, либо замалчиваются, либо упоминаются вскользь, но в специальных статьях ученые, делающие попытки подвести математическую базу под эту теорию, признают их главным препятствием. Профессора математики, вышеупомянутый С. Хоукинг из Кембриджа и Г. Эллис из Кейптауна отмечают в своей монографии «Крупномасштабная структура пространства-времени»: «На наш взгляд, вполне оправданно считать физическую теорию, которая предсказывает сингулярность, несостоявшейся ... результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определенный момент времени. Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики».

Понятно, что любая гипотеза о происхождении Вселенной, которая постулирует, что исходное состояние Вселенной не поддается физическому описанию, выглядит довольно подозрительно. Но это еще полбеды. Следующий вопрос: откуда взялась сама сингулярность? И ученые вынуждены объявить математически неописуемую точку бесконечной плотности и бесконечно малых размеров, существующую вне пространства и времени, безначальной причиной всех причин.



Не желая мириться с подобной перспективой, теоретики разработали несколько вариантов Теории Большого Взрыва, в которых пытаются обойти проблему сингулярности. Один из возможных подходов – постулировать, что сингулярность при зарождении Вселенной была не совершенной. Б. Лоувел утверждает, что сингулярность "часто представлялась как математическая проблема, возникшая из постулата об однородности Вселенной". Все классические модели Вселенной, появившейся в результате большого взрыва, обладают идеальной математической симметрией, и некоторые физики сочли это причиной появления сингулярных корней уравнений, описывающих исходное состояние Вселенной. Чтобы скорректировать это, теоретики стали вводить в свои модели асимметрию, аналогичную той, которую можно видеть в наблюдаемой Вселенной. Таким образом, они надеялись внести в исходное состояние Вселенной достаточную неупорядоченность, необходимую для того, чтобы оно не сводилось к точке. Однако все их надежды были разрушены Хоукингом и Эллисом, которые утверждают, что, согласно их расчетам, модель большого взрыва с асимметричным распределением материи в любом случае должна иметь сингулярность в исходной точке.

Глядя шире, проблема сингулярности является лишь частью более общей проблемы, проблемы возникновения Вселенной (независимо от того, каким было ее начальное состояние). Если какая-либо модель Вселенной постулирует сингулярность, это, несомненно, создает очень большие теоретические трудности. Но даже если сингулярности можно избежать, то основной вопрос по-прежнему остается без ответа: откуда, собственно, появилась Вселенная? Надеясь уклониться от ответа на этот вопрос, некоторые ученые предложили теорию так называемой «бесконечно пульсирующей Вселенной». В соответствии с этой теорией, Вселенная расширяется, а затем сжимается до сингулярности, затем вновь расширяется и снова сжимается. У нее нет ни начала, ни конца. Это снимает вопрос о происхождении Вселенной – она ниоткуда не возникает, а существует вечно.

Но и эта модель не лишена серьезных недостатков. Прежде всего, до сих пор никто не смог удовлетворительно объяснить механизм пульсирования. Далее, в своей работе «Первые три минуты» физик С. Вайнберг утверждает, что каждый цикл расширения и сжатия должен приводить к определенным прогрессирующим изменениям во Вселенной, а это значит, что у Вселенной должно быть начало, иначе вся история Вселенной будет регрессом, растянувшимся на вечность. Таким образом, перед нами вновь встает вопрос о происхождении Вселенной.

Другой попыткой уйти от вопроса о происхождении Вселенной была предложенная английским астрофизиком П. Дэвисом модель «пульсирующей Вселенной с обращением хода времени». Согласно этой теории, Вселенная сначала расширяется, а затем сжимается до сингулярности, причем в начале каждого следующего цикла расширения-сжатия время поворачивает вспять, приводя, в конце концов, к сингулярности, с которой начинался предыдущий цикл. Согласно этой модели, прошлое становится будущим, а будущее – прошлым, так что понятие "начало Вселенной" лишается смысла. Все это очень напоминает старую научную фантастику и дает некоторое представление о том, на какие ухищрения вынуждены пускаться ученые-космологи, чтобы как-то объяснить происхождение Вселенной.

 

2. Астрономия

 

Если сингулярность – проблема сугубо теоретического характера, понятие глобальное и неоднозначное, то у Теории Большого Взрыва есть и более "прозаичные" проблемы. А именно: первая проблема – происхождение галактик.

Современные версии космологических теорий предсказывают только появление однородного облака газа. Плотность этого облака к настоящему времени должна быть не больше одного атома на кубометр – немногим лучше, чем вакуум. Чтобы получить нечто большее, требуется корректировка исходного состояния Вселенной, которую очень трудно научно обосновать по ряду причин. Во-первых, полное отсутствие какой-либо вспомогательной практики. Во-вторых, невозможность с помощью математических, физических или химических уравнений описать сам процесс формирования галактик и звезд в них. Особенно если учитывать, что для нас остаются большой загадкой многие свойства галактик. В такого рода вопросах существуют лишь два способа решения. Первый: упростить модель развития Вселенной и предположить, что все Галактики более – менее идентичны нашей или имеют минимум различий, которые можно просчитать на основе простой математической теории вероятности. Тогда соответственно вычисления упростятся во много (по некоторым подсчетам, в 75-80 триллионов) раз. Второй: заставить вычислительную машину рассчитывать развитие Вселенной на уровне элементарных частиц. Этот вариант традиционно считается более правильным, но его неосуществимость на данный момент, увы, через чур очевидна: современному вычислительному агрегату с процессором в 500 ГГц, оперативной памятью в сотню Гбайт и обычной памятью в тысячу Гбайт требуется 3 часа 12 минут для того, чтобы полностью с нуля рассчитать траектории движения всех тел в Солнечной системе, вплоть до астероидов. Одному из самых мощных таких центров, находящемся сейчас на стадии проектирования (примерно 7000 ГГц, три тысячи Гбайт оперативной и десять тысяч простой памяти) на это потребуется полчаса. Эта система ориентировочно будет собрана в 2015 году. Судя по этим данным, просчитать развитие вселенной за 13-20 миллиардов лет компьютеры смогут где-то эдак году в 2080-м, так? Не так. Хуже того, даже 2100 год очень оптимистичная цифра. Ведь проблема не только в мощности, а еще и в сложности программного обеспечения для такого рода машин. Сегодня для написания программ, вычисляющих орбиты планет с точностью до одного дециметра, требуется года два работы целого НИИ вычислительной техники и кибернетики. Сколько людей и человеко-часов потребуется для создания столь масштабной программы, как расчет появления галактик, никто не знает и, даже, подсчитать не берется. По наиболее оптимистичным оценкам – десять или пятнадцать лет. По пессимистичным…. более ста. И еще: а что, если данные, заложенные в основу программы, изменяться за эти пятнадцать – сто лет? Тогда все усилия программистов пойдут насмарку.

Вторая проблема, связанная с астрономией, это проблема «недостающей массы». «Измеряя световую энергию, излучаемую Млечным Путем, можно приблизительно определить массу нашей галактики. Она равняется массе ста миллиардов Солнц. Однако, изучая закономерности взаимодействия того же Млечного Пути с близлежащей галактикой Андромеды, мы обнаружим, что наша галактика притягивается к ней так, как будто весит в десять раз больше», объясняет Давид Шрамм, профессор Чикагского университета. Таким образом, разница в массе, определенной двумя методами, составляет 90%. Чтобы объяснить это, ученые решили списать недостаток массы на призрачные субатомные частицы, нейтрино. Первоначально нейтрино считались невесомыми, но, когда потребовалось, им приписали массу, чтобы «обнаружить» недостающую массу галактики. Это является хорошим примером двух вещей: во-первых, того, что пересмотр прежних понятий порой позволяет объяснить новые понятия, и, во-вторых, того, что даже ученые пользуются школьным методом подгона решения задачи под ее ответ.

Даже если отложить вопрос о происхождении Вселенной и обратиться к ее строению, мы увидим, что и тут далеко не все обстоит благополучно. Ученые уверенно заявляют, что Вселенная простирается на Х световых лет и что ее возраст – Y миллиардов лет. Они утверждают, что знают природу всех основных космических объектов: звезд, галактик, туманностей, квазаров и т.д. В то же время мы не имеем ясного представления даже о галактике Млечного Пути, к которой мы принадлежим.

Например, в журнале «Научная Америка» известный астроном Б. Дж. Бок пишет: «Я вспоминаю середину семидесятых годов, когда я и мои коллеги, исследователи Млечного Пути, были абсолютно уверены в себе… В то время никому не могло прийти в голову, что очень скоро нам придется пересмотреть свои представления о размерах Млечного Пути, увеличив его диаметр втрое, а массу вдесятеро». Если даже такие параметры были столь кардинально изменены после десятков лет наблюдений и исследований, то что можно ожидать от будущего? Не придется ли нам еще более кардинально менять свои взгляды?

 

3. Квантовая физика

 

Все современные космологические теории также опираются на квантовую механику, которая описывает поведение атомных и субатомных частиц. Квантовая физика принципиально отличается от классической, ньютоновой физики. Классическая физика занимается описанием поведения материальных объектов, в то время как квантовая физика сосредоточена только на математическом описании процессов наблюдения и измерения. Вещественная материальная реальность исчезает из поля ее зрения. Нобелевский лауреат В. Гейзенберг говорит: «Оказалось, что мы больше не способны отделить поведение частицы от процесса наблюдения. В результате нам приходится мириться с тем, что законы природы, которые квантовая механика формулирует в математическом виде, имеют отношение не к поведению элементарных частиц как таковых, а только к нашему знанию об этих частицах». В квантовой механике наряду с объектом исследования и инструментами исследования элементом анализируемой картины становится наблюдатель.

Однако применение квантовой механики для описания Вселенной сопряжено с серьезными трудностями. По определению, все наблюдатели являются частью Вселенной. В случае Вселенной мы лишены возможности представить себе постороннего наблюдателя. В попытке сформулировать версию квантовой механики, которая не нуждается в постороннем наблюдателе, известный физик Дж. Уилер предложил модель, в соответствии с которой Вселенная постоянно расщепляется на бесконечное количество копий. Каждая параллельная Вселенная имеет своих наблюдателей, которые видят данный конкретный набор квантовых альтернатив, и все эти Вселенные реальны. В. Вит пишет о своей реакции на эту теорию в журнале «Физикс тудэй»: «Я до сих пор помню потрясение, которое испытал, впервые ознакомившись с теорией множественности миров. Идея о том, что каждое мгновение из меня появляется 10 в 100-ой степени слегка отличающихся друг от друга двойников, и каждый из них продолжает беспрестанно делиться, пока не изменится до неузнаваемости, не укладывается в рамки здравого смысла. Вот уж поистине картина бесконечно прогрессирующей шизофрении». Это всего лишь один пример фантастических гипотез, которые приходится выдвигать ученым, чтобы согласовать теорию большого взрыва с квантовой механикой.

Однако на этом беды ученых, избравших путь материалистического редукционизма, не кончаются. Мало того, что теория относительности и квантовая механика сами по себе в применении к космологии приводят к необоснованным и фантастическим моделям. Чтобы по-настоящему оценить всю шаткость надежд ученых когда-либо найти разгадку происхождения Вселенной, нужно знать, что они возлагают их главным образом на еще не созданную теорию единого поля (ТЕП), которая должна будет объединить в себе теорию относительности и квантовую механику. Они надеются, что эта теория опишет все силы, действующие во Вселенной, с помощью одного компактного математического выражения. При этом теория относительности необходима для описания общей структуры пространства-времени, а квантовая механика – для объяснения поведения субатомных частиц. К сожалению, обе теории явно противоречат друг другу.

Первым шагом на пути к математической интеграции обеих теорий является теория квантового поля. Эта теория пытается описать поведение электронов, объединяя квантовую механику и частную теорию относительности Эйнштейна. Такое объединение идей оказалось довольно успешным, но в то же время английский физик, лауреат Нобелевской премии П. Дирак, автор теории квантового поля, признался: «Похоже, что поставить эту теорию на солидную математическую основу практически невозможно». Вторым и гораздо более сложным шагом должна быть интеграция общей теории относительности и квантовой механики, но пока никто не имеет ни малейшего представления о том, как это сделать. Даже такие признанные авторитеты, как Нобелевский лауреат С. Вайнберг, признают, что только для создания математического аппарата новой теории понадобится столетие или два.

 

 


Часть пятая





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...