Главная Обратная связь

Дисциплины:






Статистический вывод



 

Вывод является видом логического анализа, направленного на по­лучение общих заключений о всей совокупности на основе наблюдений за малой группой единиц данной совокупности.

Выводы делаются на основе анализа малого числа фактов. Напри­мер, если два ваших товарища, имеющих одну и ту же марку автомобиля, жалуются на его качество, то вы можете сделать вывод о низком качестве данной марки автомобиля в целом.

Статистический же вывод основан на статистическом анализе ре­зультатов выборочных исследований и направлен на оценку параметров совокупности в целом. В данном случае результаты выборочных исследо­ваний являются только отправной точкой для получения общих выводов.

Например, автомобилестроительная компания провела два незави­симых исследования с целью определения степени удовлетворенности потребителей своими автомобилями. Первая выборка включала 100 по­требителей, купивших данную модель в течение последних шести меся­цев. Вторая выборка включала 1000 потребителей. В ходе телефонного интервьюирования респонденты отвечали на вопрос: «Удовлетворены вы или не удовлетворены купленной вами моделью автомобиля?» Первый опрос выявил 30% неудовлетворенных, второй — 35%.

Поскольку существуют ошибки выборки и в первом и во втором случаях, то можно сделать следующий вывод. Для первого случая: около 30% опрошенных выразили неудовлетворенность купленной моделью автомобиля. Для второго случая около 35% опрошенных выразили не­удовлетворенность купленной моделью автомобиля. Какой же общий вывод можно сделать в данном случае? Как избавиться от термина «около»? Для этого введем показатель ошибки: 30% ± х% и 35% ± у% и сравним х и у. Используя логический анализ, можно сделать вывод, что большая выборка содержит меньшую ошибку и что на ее основе можно сделать более правильные выводы о мнении всей совокупности потреби­телей. Видно, что решающим фактором для получения правильных выво­дов является размер выборки. Данный показатель присутствует во всех формулах, определяющих содержание различных методов статистиче­ского вывода.

При проведении маркетинговых исследований чаще всего исполь­зуются следующие методы статистического вывода: оценка параметров и проверка гипотез.

Оценка параметров генеральной совокупности представляет из себя процесс определения, исходя из данных о выборке, интервала, в котором находится один из параметров генеральной совокупности, например среднее значение. Для этого используют следующие статистические пока­затели: средние величины, среднюю квадратическую ошибку и желаемый уровень доверительности (обычно 95% или 99%).

Ниже пойдет разговор об их роли при проведении оценки пара­метров.



Средняя квадратическая ошибка является, как отмечалось выше, мерой вариации выборочного распределения при теоретическом предпо­ложении, что исследовалось множество независимых выборок одной и той же генеральной совокупности.

Она определяется по следующей формуле:

где sx средняя квадратическая ошибка выборочной средней;

s — среднее квадратическое отклонение от средней величины в вы­борке;

n — объем выборки.

Если используются процентные меры, выражающие альтернатив­ную изменчивость качественных признаков, то

где s — средняя квадратическая ошибка выборочной средней при использовании процентных мер;

р — процент респондентов в выборке, поддержавших первую альтернативу;

q = (100 — q) — процент респондентов в выборке, поддержавших

вторую альтернативу;

n — объем выборки.

Видно, что средняя ошибка выборки тем больше, чем больше ва­риация, и тем меньше, чем больше объем выборки.

Поскольку всегда существует выборочная ошибка, то необходимо оценить разброс значений изучаемого параметра генеральной совокупно­сти. Предположим, исследователь выбрал уровень доверительности, рав­ный 99%. Из свойств нормальной кривой распределения вытекает, что ему соответствует параметр Z = ± 2,58. Средняя для генеральной сово­купности в целом вычисляется по формуле

Если используются процентные меры, то

Это означает, что если вы хотите, чтобы при 99%-ном уровне до­верительности диапазон оценок включал истинную для генеральной со­вокупности оценку, то необходимо умножить среднюю квадратическую ошибку на 2,58 и добавить полученный результат к процентному значе­нию р (верхняя предельная оценка). Если же произвести вычитание дан­ного произведения, то найдем нижнюю предельную оценку.

Как эти формулы связаны со статистическим выводом?

Поскольку производится оценка параметра генеральной совокуп­ности, то здесь указывается диапазон, в который попадает истинное зна­чение параметра генеральной совокупности. С этой целью для выборки берутся статистическая мера центральной тенденции, величина диспер­сии и объем выборки. Далее делается предположение об уровне довери­тельности и рассчитывается диапазон разброса параметра для генераль­ной совокупности.

Например, для членов выборки (100 читателей какой-то газеты) было установлено, что среднее время чтения газеты составляет 45 минут при средней квадратической ошибке в 20 минут. При уровне доверитель­ности, равном 95%-ном, получим

 

 

При 99%-ном уровне доверительности получим

 

 

Видно, что доверительный интервал шире для 99% по сравнению с 95%-ным уровнем доверительности.

Если используются проценты и оказалось, что из выборки в 100 человек 50% опрошенных по утрам пьет кофе, то при уровне доверитель­ности в 99% получим следующий диапазон оценок:

 

Таким образом, логика статистического вывода направлена на по­лучение конечных заключений об изучаемом параметре генеральной со­вокупности на основе выборочного исследования, осуществленного по законам математической статистики. Если используется простое заклю­чение, не основанное на статистических измерениях, то конечные выво­ды носят субъективный характер и на основе одних и тех же фактов раз­ные специалисты могут сделать разные выводы.

При использовании статистического вывода используются форму­лы, носящие объективный характер, в основе которых лежат общепри­знанные статистические концепции. В результате конечные выводы но­сят намного более объективный характер.

В ряде случаев делаются суждения относительно какого-то пара­метра генеральной совокупности (величине средней, дисперсии, характе­ре распределения, форме и тесноте связи между переменными) исходя только из некоторых предположений, размышлений, интуиции, непол­ных знаний. Такие суждения называются гипотезами.

Статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на дан­ные выборки.

Подпроверкой гипотезы понимается статистическая процедура, применяемая для подтверждения или отклонения гипотезы, основанной на результатах выборочных исследований. Проверка гипотезы осуществляется на основе выявления согласованности эмпирических данных с гипотетическими. Если расхождение между сравниваемыми величинами не выходит за пределы случайных ошибок, гипотезу принимают. При этом не делается никаких заключений о правильности самой гипотезы, речь идет лишь о согласованности сравниваемых данных.

Проверка гипотезы проводится в пять этапов:

1. Делается некоторое предположение относительно какой-то ха­рактеристики генеральной совокупности, например о средней величине определенного параметра.

2. Формируется случайная выборка, проводится выборочное иссле­дование и определяются статистические показатели выборки.

3. Сравниваются гипотетическое и статистическое значения иссле­дуемой характеристики.

4. Определяется, соответствуют или нет результаты выборочного исследования принятой гипотезе.

5. Если результаты выборочного исследования не подтверждают ги­потезу, последняя пересматривается — она должна соответствовать дан­ным выборочного исследования.

Вследствие вариации результатов выборочных исследований не­возможно сделать абсолютно точный вывод о достоверности гипотезы, проводя простое арифметическое сравнение величин характеристик. По­этому статистическая проверка гипотезы включает использование: выбо­рочного значения характеристики, среднего квадратического отклонения, желательного уровня доверительности и гипотетитеского значения харак­теристики для генеральной совокупности в целом.

Для проверки гипотез о средних величинах применяется следую­щая формула:

 

 

Например, готовя рекламу учебной программы по подготовке тор­говых агентов в колледже, руководитель программы считал, что выпуск­ники программы получают в среднем 1750 долларов в месяц. Таким обра­зом, гипотетическая средняя для генеральной совокупности равна 1750 долларам. Для проверки данной гипотезы было проведено телефонное обследование торговых агентов разных фирм.

Выборка составила 100 человек, средняя для выборки равнялась 1800 долларам и среднее квадратическое отклонение составляло 350 дол­ларов. Возникает вопрос, является ли большой разница (50 долларов) между гипотетической зарплатой и ее средним значением для выборки. Проводим расчеты по формуле (4.2):

 

 

Видно, что средняя квадратическая ошибка средней величины бы­ла равна 35 долларам, а частное от деления 50 на 45 составляет 1,43 (нор­мированное отклонение), что меньше ±1,96 — величины, характеризую­щей уровень доверительности 95%. В данном случае выдвинутую гипотезу можно признать достоверной.

При использовании процентной меры испытание гипотезы осуще­ствляется следующим образом. Предположим, что, исходя из собствен­ного опыта, один из автолюбителей выдвинул гипотезу, согласно которой только 10% автолюбителей используют ремни безопасности. Однако на­циональные выборочные исследования 1000 автолюбителей показали, что 80% из них используют ремни безопасности. Расчеты в данном случае проводятся следующим образом:

 

 

где р — процент из выборочных исследований;

πH процент из гипотезы;

sp — средняя квадратическая ошибка при расчетах в процентах.

Видно, что первоначальная гипотеза отличалась от найденных 80% на величину 55,3, умноженную на среднеквадратическую ошибку, т.е. не может быть признана достоверной.

В ряде случаев целесообразно использовать направленные гипоте­зы. Направленные гипотезы определяет направления возможных значе­ний какого-то параметра генеральной совокупности. Например, заработ­ная плата составляет больше 1750 долларов. В данном случае использует­ся только одна сторона кривой распределения, что находит отражение в применении знаков «+» и «-» в расчетных формулах.

Более детальную информацию по данной проблеме можно полу­чить из [25].

Здесь, правда, возникает вопрос. Если можно провести выбороч­ные исследования, то зачем выдвигать гипотезы? Обработка результатов выборочных исследований дает возможность получить средние величины и их статистические характеристики, не выдвигая никаких гипотез. По­этому проверка гипотез скорее применяется в случаях, когда невозможно или чрезвычайно трудоемко проводить полномасштабные исследования и когда требуется сравнивать результаты нескольких исследований (для разных групп респондентов или проведенных в разное время). Такого рода задачи, как правило, возникают в социальной статистике. Трудоем­кость статистико-социологических исследований приводит к тому, что почти все они строятся на несплошном учете. Поэтому проблема доказа­тельности выводов в социальной статистике стоит особенно остро.

Применяя процедуру проверки гипотез, следует помнить, что она может гарантировать результаты с определенной вероятностью лишь по «беспристрастным» выборкам, на основе объективных данных.

Анализ различий

 

Проверка существенности различий заключается в сопоставлении ответов на один и тот же вопрос, полученных для двух или более независимых групп респондентов. Кроме того, в ряде случаев представляет ин­терес сравнение ответов на два или более независимых вопросов для од­ной и той же выборки.

Примером первого случая может служить изучение вопроса: что предпочитают пить по утрам жители определенного региона: кофе или чай. Первоначально было опрошено на основе формирования случайной выборки 100 респондентов, 60% которых отдают предпочтение кофе; че­рез год исследование было повторено, и только 40% из 300 опрошенных человек высказалось за кофе. Как можно сопоставить результаты этих двух исследований? Прямым арифметическим путем сравнивать 40% и 60% нельзя из-за разных ошибок выборок. Хотя в случае больших разли­чий в цифрах, скажем, 20 и 80%, легче сделать вывод об изменении вку­сов в пользу кофе. Однако если есть уверенность, что эта большая разни­ца обусловлена прежде всего тем, что в первом случае использовалась очень малая выборка, то такой вывод может оказаться сомнительным. Таким образом, при проведении подобного сравнения в расчет необхо­димо принять два критических фактора: степень существенности разли­чий между величинами параметра для двух выборок и средние квадратические ошибки двух выборок, определяемые их объемами.

Для проверки, является ли существенной разница измеренных средних, используется нулевая гипотеза. Нулевая гипотеза предполагает, что две совокупности, сравниваемые по одному или нескольким призна­кам, не отличаются друг от друга. При этом предполагается, что действи­тельное различие сравниваемых величин равно нулю, а выявленное по данным отличие от нуля носит случайный характер [10], [25].

Для проверки существенности разницы между двумя измеренными средними (процентами) вначале проводится их сравнение, а затем полу­ченная разница переводится в значение среднеквадратических ошибок, и определяется, насколько далеко они отклоняются от гипотетического нулевого значения.

Как только определены среднеквадратические ошибки, становится из­вестной площадь под нормальной кривой распределения и появляется воз­можность сделать заключение о вероятности выполнения нулевой гипотезы.

Рассмотрим следующий пример. Попытаемся ответить на вопрос: «Есть ли разница в потреблении прохладительных напитков между де­вушками и юношами?». При опросе был задан вопрос относительно чис­ла банок прохладительных напитков, потребляемых в течение недели. Описательная статистика показала, что в среднем юноши потребляют 9, а девушки 7,5 банок прохладительных напитков. Средние квадратические отклонения, соответственно, составили 2 и 1,2. Объем выборок в обоих случаях составлял 100 человек. Проверка статистически значимой разни­цы в оценках осуществлялась следующим образом:

 

 

где x1 и x2 — средние для двух выборок;

s1 и s2 — средние квадратические отклонения для двух выборок;

n1 и n2 — объем соответственно первой и второй выборки.

 

Числитель данной формулы характеризует разницу средних. Кроме того, необходимо учесть различие формы двух кривых распределения. Это осуществляется в знаменателе формулы. Выборочное распределение теперь рассматривается как выборочное распределение разницы между средними (процентными мерами). Если нулевая гипотеза справедлива, то распределение разницы является нормальной кривой со средней, равной нулю, и средней квадратической ошибкой, равной 1.

Видно, что величина 6,43 существенно превышает значение ±1,96 (95%-ный уровень доверительности) и ±2,58 (99%-ный уровень довери­тельности). Это означает, что нулевая гипотеза не является истинной.

На рис. 4.6 приводятся кривые распределения для этих двух срав­ниваемых выборок и средняя квадратическая ошибка кривой разницы. Средняя квадратическая ошибка средней кривой разницы равна 0. Вслед­ствие большого значения среднеквадратических ошибок вероятность справедливости нулевой гипотезы об отсутствии разницы между двумя средними меньше 0,001.

 





sdamzavas.net - 2018 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...