Главная Обратная связь

Дисциплины:






Технологія конструкційних матеріалів

1. Властивості металів і методи їх визначення

Властивості металів поділяють на фізичні, механічні, хімічні та технологічні.

До фізичних властивостей належать: колір, густина, температура плавлення, електропровідність, магнітні властивості, теплопровідність, теплоємність, відносне видовження і зменшення по довжині при дії різних факторів.

До механічних - міцність, твердість, пружність, пластичність, в’язкість, крихкість.

До хімічних - окислюваність, розчинність, корозійна стійкість, луготривкість, кислотостійкість, жаростійкість.

До технологічних - рідинотекучість, ковкість, зварюваність, оброблюваність різанням, прогартовуваність.

Всі ці властивості мають важливе значення при виборі металів для виготовлення того чи іншого виробу.

Кожну властивість металу необхідно технічно грамотно сформулювати. Наприклад, міцність - це властивість металу чинити опір руйнуванню і появі залишкових деформацій під дією зовнішніх сил.

На даному етапі для дослідження всіх властивостей металів розроблені відповідні методики та устаткування.

Для дослідження механічних властивостей використовують механічні випробування. Найбільш поширеними є випробування на твердість, статичний розтяг, динамічні випробування, на втомленість, повзучість та зношування, які свідчать про властивості металів.

Статичні - це такі випробування, при яких метал, що випробовують піддають дії постійної сили або сили, яка зростає дуже повільно.

Динамічними називають випробування, при яких метал піддають впливу удару або сили, яка зростає дуже швидко. Статичне випробування на розтяг - поширений спосіб механічних випробувань металів. Для цього випробування виготовляються спеціальні зразки, які розриваються на спеціальних розривних машинах. На розривних машинах одержують діаграму розтягу, по якій можна визначити: межу текучості, межу міцності, відносне видовження і відносне звуження.

Межею текучості називається найменше напруження, при якому без помітного збільшення навантаження продовжується деформація досліджуваного зразка.

Межу текучості визначають за формулою:

Gт = Pт / F0 ,

де Pт - навантаження текучості;

F0 - поперечний переріз робочої частини зразка до випробування.

Умовне напруження, яке відповідає найбільшому навантаженню, що передує руйнуванню зразка, називається межею міцності і визначається за формулою:

Gв = Pв / F0,

де Pв - навантаження, що передує розриву зразка.

По відносному видовженні і звуженні оцінюють пластичність металів. Відносне видовження і звуження вимірюють у відсотках (%).

Відносне видовження визначають за формулою:

G = l1 – l0 / l0 · 100(%),



де l1 - довжина зразка після розриву; l0 - довжина зразка до розриву.

Відносне звуження визначають за формулою:

Х=F0 – F1 / F0 ·100(%),

де F0 - початкова площа поперечного перерізу робочої частини зразка; F1 - площа поперечного перерізу після розриву.

Твердість визначають за такими методами: методом Брінелля, методом Роквелла, методом Віккерса.

Метод Брінелля заснований на вдавлюванні твердої кульки у досліджуваний метал. Твердість по Брінеллю розраховується за формулою:

НВ = Р/F

де P - навантаження на кульку; F - величина поверхні відбитка.

Принцип вимірювання твердості по Роквеллу заснований на вдавлюванні у досліджуваний метал стальної кульки Ø = 1,58 мм або конуса з кутом 1200 .

Метод Віккерса дає можливість вимірювати твердість як м¢яких так і дуже твердих металів і сплавів. Він придатний для визначення твердості тонких поверхневих шарів. За цим методом у зразок вдавлюють чотиригранну алмазну піраміду з кутом при вершині 1360.

Крім цього, для визначення механічних властивостей металів використовують такі випробування:

- випробування на ударний згин;

- випробування на втомленість.

Випробування технологічних властивостей найбільш прості. Вони визначають можливість проводити ті чи інші технологічні операції з даним металом або застосовувати його у тих чи інших умовах. З них найбільш поширеними є випробування: на вдавлювання, на перегин, на іскру, зварюваність, ковкість, рідинотекучість та ін.

Для дослідження мікро- і макроструктури, а також визначення вад внутрішньої будови металів, використовують такі методи: макроаналіз, мікроаналіз, рентгеноструктурний аналіз, магнітна дефектоскопія, застосування радіоактивних ізотопів тощо.

2. Зміна будови і властивостей металів при термічній обробці

Термічна обробка полягає у зміні структури металів і сплавів при нагріванні, видержуванні та охолодженні, згідно спеціального режиму, і тим самим, у зміні властивостей останніх. В основі термічної обробки сталей лежить перекристалізація аустеніту при охолодженні. Перекристалізація може відбутися дифузійним або бездифузійним способами. У залежності від переохолодження аустеніт може перетворюватися у різні структури з різними властивостями.

Повний дифузійний розпад аустеніту відбувається при незначному переохолодженні. У даному випадку утворюється пластинчастий перліт (механічна суміш фериту і цементиту вторинного). Якщо переохолодження

збільшити до 373-393 0К, пластинки фериту і цементиту встигають вирости тільки до товщини (0,25-0,30 мнм), таку структуру називають сорбітом. Твердість сорбіту вища за твердість перліту.

Коли переохолодження досягає 453-473 0К, ріст пластинок припиняється на товщині 0,1-0,15 мнм, така структура називається трооститом. Твердість трооститу вища від твердості сорбіту.

При значному переохолодженні аустеніту (до 513 0К) дифузійний розпад його стає неможливим, перекристалізація має бездифузійний характер. У такому випадку утворюється перенасичений твердий розчин вуглецю в a-залізі, який називається мартенситом. Твердість мартенситу вища від твердості трооститу.

Структура перліту є рівноважною, а структури сорбіту, трооститу і мартенситу є не рівноважними.

Розрізняють такі види термічної обробки: відпал, нормалізація, загартування і відпуск.

Відпал. Відпалом називають нагрівання до високих температур, видержування і повільне охолодження разом з піччю.

Розрізняють такі види відпалу: рекристалізаційний, дифузійний, на зернистий перліт, ізотермічний , повний і неповний. Відпал підвищує пластичність, зменшує внутрішні напруження, понижує твердість сталей.

Нормалізація. Нормалізацією називають нагрівання до високої температури, видержування і повільне охолодження на повітрі. Нормалізація доводить сталь до дрібнозернистої та однорідної структури. Твердість і міцність сталі після нормалізації вищі, ніж після відпалу.

Загартування сталі. Загартуванням називають нагрівання до високої температури, видержування і швидке охолодження (у воді, мінеральній оливі та інших охолоджувачах). Є такі види загартування: в одному охолоджувачі; перервне; ступінчасте; ізотермічне; поверхневе та ін. Загартування сталей забезпечує підвищення твердості, виникнення внутрішніх напружень і зменшення пластичності. Твердість збільшується у зв'язку з виникненням таких структур: сорбіт, троостит, мартенсит. Практично загартуванню піддається середньо- і високовуглецеві сталі.

Відпуск сталі. Відпуском називають нагрівання до температур нижче 973 0К, видержування і повільне охолодження на повітрі.

3. Класифікація видів термічної обробки.

Розрізняють три види відпуску: низький (нагрівання до температури 473 0К; середній (573-773 0К); високий (773-973 0К). Після відпуску в деякій мірі зменшується твердість і внутрішні напруження, збільшується пластичність і в'язкість сталей. До цього приводить зміна структур після відпуску. Структура мартенситу сталі переходить відповідно в структуру трооститу і сорбіту. Чим вища температура відпуску, тим менша твердість відпущеної сталі і тим більша її пластичність та в'язкість.

Відпуск, в основному, проводять після загартування для зняття внутрішніх напружень. Низький відпуск застосовують при виготовленні різального інструменту, вимірювального інструменту, цементованих деталей та ін; середній - при виробництві ковальських штампів, пружин, ресор; високий - для багатьох деталей, що зазнають дії високих напружень (осі автомобілів, шатуни і т.п.).

4. Конструкційні сталі, вуглецеві сталі, їх класифікація, маркування, властивості, використання.

Сталь - це сплав заліза з вуглецем і домішками (кремній, марганець, сірка, фосфор та гази), в якому вуглецю не більше, ніж 2,14 %.

Сталі можна класифікувати за різними принципами, єдиної класифікації у світі немає.

Попробуємо провести класифікацію сталей таким чином:

- за вмістом вуглецю (низьковуглецеві - вміст вуглецю від 0,08 до 0,25 %, середньовуглецеві - від 0,25 до 0,60 %, високовуглецеві - від 0,60 до 2,14 %);

- за структурою (доевтектоїдні із вмістом вуглецю від 0,08 до 0,8 %, структура ферит + перліт; евтектоїдні із вмістом вуглецю 0,8 %, структура перліт; заевтектоїдні із вмістом вуглецю від 0,8 до 2,14 % структура перліт + цементит вторинний);

- за способом виробництва (конверторні, мартенівські сталі, виплавлені в електропечах і сталі після електрошлакового переплавлення);

- за призначенням (конструкційні, інструментальні та спеціального призначення).

Конструкційні сталі бувають звичайної якості і якісні. Конструкційні сталі звичайної якості, залежно від призначення, поділяють на три групи: А - що постачаються за механічними властивостями, Б - що постачаються за хімічним складом, В - що постачаються за хімічним складом і механічними властивостями.

Дані сталі маркуються таким чином:

Група А - Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6.

Група Б - БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6.

Група В - ВСт2, ВСт3, ВСт4, ВСт5.

Букви Ст означають сталь, цифри - умовний порядковий номер марки залежно від хімічного складу сталі і механічних властивостей, але не вказують на кількісний вміст вуглецю. Букви Б і В визначають групу сталі, буква А перед позначенням марки не вказується.

Щоб показати ступінь розкислення, до позначення марки після номера добавляють індекси “КП” - кипляча, “ПС” - напівспокійна, “СП” - спокійна, наприклад, Ст3пс, БСт3сп. Сталі звичайної якості випускають у вигляді листового і сортового прокату. Вони призначені для виготовлення будівельних конструкцій, арматури, кріплень деталей машин, які не несуть підвищених навантажень. Сталі групи А призначені для виробів, які при виготовленні не піддаються гарячій обробці (зварюванню, куванню), сталі групи Б - для виробів із застосуванням гарячої обробки, сталі групи В широко застосовують для виготовлення зварних конструкцій, при розрахунку яких важливо знати також і механічні властивості.

Вуглецеву якісну сталь виплавляють у кисневих конверторах, мартенівських та електричних печах. Якісна конструкційна сталь постачається як за механічними властивостях, так і за хімічним складом.

Якісна сталь перевищує сталь звичайної якості за однорідністю, є чистішою за вмістом сірки і фосфору, неметалевих включень і має вужчі межі вмісту вуглецю. Із цієї сталі виготовляють відповідальні деталі машин і механізмів, коновки, штампові, калібровані трубки і т.п.

Вони маркуються: сталь 08кп, сталь 08пс, сталь 10сп, 10, 25, 45, 85 і т.п. Двозначні цифри у маркуванні сталі визначають середній вміст вуглецю у сотих долях відсотка.

Інструментальні сталі виплавляють у мартенівських та електричних печах і використовують для виготовлення інструментів (різальних, вимірювальних, ударних тощо). Інструментальну сталь поділяють на якісну і високоякісну. Сталь якісну позначають літерою У і цифрою, що вказує на вміст вуглецю у десятих долях відсотка. Наприклад, У7, У8, аж до У13.

Сталь інструментальна високоякісна містить менше домішок (сірки, фосфору), ніж якісна; при її маркуванні додають букву А, наприклад, У8А.

Сталі спеціального призначення почали використовувати тоді, коли були впроваджені нові технологічні процеси і специфічні види промисловості.

Наприклад, сталі А1, А2, які використовуються для обробки різанням на верстатах-автоматах; СВ08 - для виготовлення зварювального дроту і зварювальних електродів; сталь 08кп - для листового штампування та ін.

Властивості сталей залежать від їх складу і структури.

Із збільшенням у сталях вмісту вуглецю, сталь стає твердішою і міцнішою, пластичність падає. Кремній і марганець у межах (0,5 - 0,7 %) істотного впливу на властивість сталі не виявляють.

Сірка є шкідливою домішкою, утворює з залізом хімічну сполуку FeS. Сірчисте залізо з залізом у сталях утворює евтектику з температурою плавлення 1258 0К. Це є причиною червоноламкості при обробці тиском з підігріванням. Вказана евтектика при певних температурах розплавляється, у результаті чого між зернами втрачається зв'язок і утворюються тріщини. Крім цього, сірка знижує пластичність і міцність сталі, опір стиранню і корозійну стійкість.

Фосфор надає сталі холодноламкості (крихкість при знижених температурах). Це пояснюється тим, що фосфор спричиняє сильну внутрішню кристалічну ліквацію.

Ферит - фаза м'яка і пластична; цементит, навпаки, надає сталі твердості та крихкості; перліт містить 1/8 цементиту і тому має підвищену міцність і твердість порівняно з феритом. Тому доевтектоїдні сталі набагато еластичніші, ніж заевтектоїдні.

Легована сталь - це сплав заліза з вуглецем та легуючими компонентами (Сr , Nі, W, Mo, Tі, V, Со та ін.), в якому вуглецю не більше, як 2,14 %. Вуглецева сталь часто не відповідає вимогам сучасного машинобудівного та інструментального виробництва. У таких випадках використовують леговану сталь. Легуючі компоненти, що вводяться у сталь, змінюють її механічні, фізичні та хімічні властивості. Для легування сталі застосовують хром, нікель, марганець, кремній, вольфрам, молібден, ванадій, кобальт, титан, алюміній, мідь та ін.

Найпростішою і оптимальною класифікацією легованих сталей є класифікація за:

1. Вмістом легуючих компонентів:

- низьколеговані (сумарний вміст легуючих компонентів до 5 %);

- середньолеговані (5-10 %);

- високолеговані (до 10 %).

2. Структурою (на п'ять класів: перлітний, мартенситний, аустенітний, карбідний і феритний).

3. Призначенням. Залежно від призначення леговану сталь поділяють на конструкційну, інструментальну і спеціального призначення.

Конструкційну сталь використовують для виготовлення будівельних конструкцій, деталей машин.

5. Леговані сталі. Вплив легуючих елементів на структуру та властивості. Класифікація, маркування.

Для конструкційної легованої сталі прийнято маркування, за яким перші дві цифри вказують середній вміст вуглецю в сотих частках відсотка, букви - наявність відповідних легуючих компонентів, а цифри, що стоять за буквами, процентний вміст цих компонентів. Якщо після якоїсь букви немає цифри, то це означає, що сталь містить даний елемент у кількості біля 1 %.

Для позначення легуючих компонентів взято такі букви:

Х - хром, Н - нікель, Г - марганець, С - кремній, В - вольфрам, М - молібден, Ф - ванадій, К - кобальт, Т - титан, Ю - алюміній, Д - мідь, Р - бор, Б - ніобій, А - азот, Е - селен, Ц - цирконій.

Наприклад, марка 30ХН3 означає хромонікелеву сталь, що містить 0,3 % С, до 1 % Сr та 3 % Nі.

Для позначення високоякісної легованої сталі у кінці маркування додають букву А, наприклад, 30ХГСА, для позначення особливо високоякісної сталі - букву Ш.

Для сталей інструментальних порядок маркування за легуючими компонентами такий самий, як і для конструкційної, але кількість вуглецю зазначається першою цифрою у десятих частках відсотка. Якщо цифри немає, то сталь містить більше 1 % вуглецю.

Наприклад, сталі для ударно-штампового і вимірювального інструменту 20Х12 (містить 2,0-2,2 % С і 11,5-13,0 % Сr), Х12Ф1, сталі для різального інструменту 9ХС містить 0,9 % С, по 1 % хрому і кремнію).

На відміну від попередніх маркується швидкорізальна сталь. Встановлені такі марки швидкорізальної сталі: Р18, Р12, Р9, Р6М3, Р18М, Р9М, Р9Ф5, Р14ФА, Р18Ф2, Р9К5, Р9К10, Р6М5, Р18К5Ф2. Буква Р вказує про наявність у сталях карбіду вольфраму, цифра після букви Р вказує на вміст карбіду вольфраму в відсотках. Наприклад, сталь марки Р6М5 містить до 6 % карбіду вольфраму і до 5 % молібдену.

Сталі спеціального призначення. Багато машин, приладів та іншого устаткування мають деталі, до яких ставляться особливі вимоги:

- опір дії хімічних, агресивних середовищ;

- збереження міцності при високих температурах;

- стійкість проти окислення при високих температурах;

- зносостійкість, магнітні, теплові та інші властивості.

Маркуються вони за принципом конструкційних сталей. Наприклад, жаростійка легована сталь Х25Н20С2 (містить до 1 % С, до 25 % Сr , до 20 % і до 2 % ).

6. Чавуни. Класифікація та маркування чавунів. Властивості чавунів в залежності від їх структури і хімічного складу та галузі їх використання .

Чавун - це сплав заліза з вуглецем та домішками (, Mn, S, P, O2 , Н2 , N2 ), в якому вуглецю більше як 2,14 %.

Чавуни доцільно класифікувати за призначенням на: білі, сірі, ковкі, високоміцні і антифрикційні.

Білі чавуни - це чавуни, в яких вуглець перебуває у зв'язаному стані, у вигляді цементиту (Fe3C). Їх можна класифікувати за структурою: до евтектичні (вміст вуглецю від 2,14 до 4,3 %); евтектичні (вміст вуглецю 4,3 %); заевтектичні (вміст вуглецю від 4,3 до 6,67 %).

Білі чавуни в основному використовують для переробки у сталь. В окремих випадках для виготовлення виробів, які не піддаються високим навантаженням.

Сірі чавуни - це чавуни, в яких вуглець перебуває як у зв'язаному стані (Fe3C) так і в вільному у вигляді графіту. Сірі чавуни маркуються буквами СЧ з цифрою, яка вказує мінімальну границю міцності на розрив або розтяг.

Згідно ДСТУ є такі марки сірого чавуну: СЧ12, СЧ15, СЧ18, СЧ21, СЧ24, СЧ25, СЧ32, СЧ35, СЧ40, СЧ45. Сірі чавуни використовуються для виготовлення різних відливок для сільськогосподарських машин і побутової техніки. У структуру сірих чавунів обов'язково входить фаза графіт у вигляді пластинок. Це дозволяє в деякій мірі підвищити пластичність у порівнянні з білими чавунами.

Ковкий чавун - умовна назва м'якого і в'язкого чавуну, який одержують з білого чавуну шляхом відливанням з подальшою термічною обробкою. Його не кують, але він набагато пластичніший за сірий чавун. Ковкий чавун, як і сірий, складається із основи – сталі та містить частину вуглецю у вигляді графіту, проте графітові включення у ковкому чавуні інші по формі (у вигляді плям, а не пластин). Властивості ковкого чавуну залежать від металевої основи і розміру включень графіту, чим менші включення графіту, тим міцніший ковкий чавун.

Ковкий чавун позначають буквами КЧ і двома числами, з яких перше вказує мінімальну границю міцності на розтяг, друге - мінімальне відносне видовження d (%). Відомі такі марки ковкого чавуну: на феритній основі (3-10 % перліту ) КЧ30-6, КЧ33-8, КЧ35-10, КЧ37-12, на перлітній основі (0-20 % фериту) КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3.

Ковкий чавун широко використовують у сільськогосподарському машинобудуванні, в автомобільній і тракторній промисловості, верстатобудуванні та в інших галузях промисловості.

Високоміцні чавуни. Підвищення міцності і пластичності чавунів досягають модифікуванням під час виплавляння, яке забезпечує одержання глобулярного (сфероїдального) графіту замість пластинчастого. Таку форму графіту одержують при введені присадок у рідкий чавун магнію або лігатури (20 % Mg + 80 % Nі).

Встановлені такі марки високоміцного чавуну у відливках: ВЧ35, ВЧ40, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100, ВЧ120. Число вказує мінімальну границю міцності на розрив або розтяг.

Міцність чавуну збільшується із збільшенням кількості перліту і дисперсності глобулів графіту.

Високоміцний чавун використовують замість сталі для відливання валів, зубчастих коліс, муфт, задніх мостів автомобілів, картерів та ін.

7. Інструментальні сталі. Класифікація інструментальних сталей.

Основна вимога для цієї групи сталей є збереження ріжучої кромки на протязі довгого часу, тому, як правило, вони мають твердість близько 60НRC. Якщо великі швидкості обробки металу, то інструмент нагрівається і в цьому випадку основна задача – збереження твердості при тривалому високому нагріві. Відповідно до своїх властивостей та призначення інструментальні сталі поділяються на групи:

· пониженої прогартованості,

· підвищеної прогартованості,

· штампові,

· швидкоріжучі.

Інструментальні сталі пониженої прогартованості . До цієї групи належать вуглецеві сталі з вмістом вуглецю 0,65-1,2%. Позначаються буквою „У”, а потім цифра, яка показує вміст вуглецю в десятих долях відсотка, наприклад У7, У13 (0,7; 1,3 відсотки вуглецю). Чим вища твердість (більше вуглецю), тим вище зносостійкість, але менше міцність. Тому, якщо інструмент працює без ударів, то використовують У12, а якщо з ударами, то використовують У7, У8.

Інструментальні сталі підвищеної прогартованості. Це сталі, що містять 1-3% легуючих елементів і тому мають підвищену прогартованість. В якості легуючих елементів, в основному, використовують хром, кремній, марганець, вольфрам, при вмісті вуглецю біля 1% (9ХС, ХВГ, ХВ5).

Штампові сталі. Для обробки металу тиском використовується група сталей, які називаютьштамповими. Ця група сталей використовується для виготовлення штампів холодного та гарячого деформування: пуансонів, матриць, філь’єр для волочіння дроту. При цьому розрізняють штампові сталі для деформування металу в холодному та гарячому стані.

Для холодного штампування використовують високовуглецеві (У8-У12) та низьколеговані сталі (ХВГ та ХВСГ). Значно кращі властивості мають сталі леговані 6-12% Cr (Х6ВФ, Х12, Х12М). Висока твердість та зносостійкість цих сталей зумовлена утворенням великої кількості карбідів хрому, які мають високу твердість. Позитивно впливає на зносостійкість легування ванадієм, так сталь Х12Ф4М має в 2рази вищу зносостійкість ніж Х12М.

Сталі цієї групи повинні, як і попередньої, мати високу міцність і зносостійкість і особливо бажана високу межа текучості (пружності), щоб при високих температурах штамп не деформувався та при цьому зберігати ці показники при тривалій температурній дії, а також мати достатню окалиностійкість при нагріві до температур 700-800оС. Для цієї групи використовують низько та середньолеговані сталі з вмістом вуглецю 0,3-0,6% леговані хромом, нікелем, молібденом ванадієм (5ХНТ, 5ХГМ, 5Х2НМФС).

Швидкоріжучі сталі. Ці сталі служать для виготовлення інструменту, що працює при високих швидкостях різання і за рахунок цього нагрівається до 600оС. Це сталі, що мають вміст вуглецю 0,7-0,9%, 3-4%Сr та основний легуючий елемент – вольфрам, карбіди якого забезпечують високу твердість сталі при значних температурах. Позначаються швидкоріжучі сталі буквою „Р”, потім цифри, які показують вміст вольфраму в відсотках. Найбільш поширена була марка швидкоріжучої сталі Р18 (0,7-0,8%С, 3,8-4,4%Сr та 17-18%W). Враховуючи великий дефіцит вольфраму, який широко використовується в електротехнічній промисловості, в 70ті роки минулого століття були розроблені марки швидкоріжучих сталей легованих молібденом та ванадієм, що дозволило значно знизити вміст вольфраму (Р6М5), або зовсім від нього відмовитись (Р0М5Ф).

Враховуючи високий вміст вуглецю та легуючих елементів в інструментальних сталях, а також переважно структуру мартенситу, яку вони мають, зварювання для даної групи сталей практично не використовується. Досить широко використовують процеси наплавлення поверхні штампів спеціальними матеріалами, як при ремонті, так і при виготовлені нових виробів

8. Кольорові метали і сплави. Алюмінієві сплави. Мідь та її сплави, властивості та використання.

Алюміній та основні алюмінієві сплави.Алюміній - метал білого кольору, температура плавлення 933 0К, густина 2,7 г/см3, володіє високою корозійною стійкістю, електропровідністю, теплопровідністю, пластичністю; невисокою твердістю і міцністю. В основному, алюміній використовують в електротехніці.

Розділяють ливарні і деформовані алюмінієві сплави. Ливарні алюмінієві сплави - це найчастіше сплави, які містять кремній, мідь і магній.

Силуміни - це сплави алюмінію з кремнієм (від 6 до 13%). Вони маркуються АЛ2, АЛ9 і т.д. (букви свідчать, що це силумін, а цифри - порядковий номер). Силуміни використовують для виготовлення корпусів приладів, кронштейнів, фланців, картерів, поршнів тощо.

Алюмінієві сплави, що обробляються тиском (деформовані - дюралюмінії). Дюралюміній - це сплав алюмінію з міддю, магнієм і марганцем. Дюралюміній маркується так: Д1, Д16 (Д - вказує, що це дюралюміній, а цифра - порядковий номер). Наприклад, Д16 містить 3,8-4,9 % Си, 1,2-1,8 % Mg і 0,3-0,9 % Мп. Сплави дюралюмінію широко використовуються в авіаційній і ракетній промисловості.

На механічні властивості дюралюмінію інтенсивно впливає термічна обробка. У результаті загартування і старіння механічні властивості дюралюмінію підвищуються до показників середньовуглецевої сталі.

Слід відмітити, що в даний час розроблено багато інших алюмінієвих сплавів, які використовуються у сучасних галузях промисловості.

Мідь та основні сплави на її основі.Мідь - метал червонувато-рожевого кольору, температура плавлення 1356 0К, густина 8,9 г/см3, корозійностійкий, володіє: високою електропровідністю і теплопровідністю; високою пластичністю; малою міцністю і твердістю. В основному, чиста мідь використовується в електротехніці.

У промисловості використовують сплави міді з цинком, оловом, алюмінієм, берилієм, нікелем, марганцем, свинцем. Добавка до міді вказаних компонентів підвищує її механічні, технологічні і антифрикційні властивості.

Латуні. Латуні є прості та спеціальні. Прості латуні - це сплав міді з цинком. Спеціальні - це сплав міді з цинком та іншими компонентами. Вміст цинку в латунях не перевищує 43 %, так як більший вміст цинку приводить до зменшення міцності і підвищення крихкості латуні. Прості латуні маркуються, наприклад, Л62 (вона містить 62 % міді і решта - цинк). Спеціальні латуні маркуються, наприклад, ЛМЖ 55-3-1 (вона містить 55 % Си, 3 % Мn, 1 % , решта - цинк/. Латуні використовують для виготовлення труб, прутків, дроту, фольги, втулок, підшипників, шестерень і арматури.

Бронза. Бронза - це сплав міді з будь-яким компонентом, навіть у бронзах може бути присутній у невеликих кількостях цинк, який суттєво не впливе на властивості останньої. Найважливішими бронзами є олов'янисті, алюмінієві, кремнієві, нікелеві, берилієві, хромисті, фосфористі. Олов'янисті і свинцеві бронзи мають високі антифрикційні властивості і використовуються як підшипники ковзання.

Алюміній у бронзах підвищує міцність і вони використовуються для виготовлення різних деталей і конструкцій.

Берилій підвищує у бронзах пружність, тому берилієві бронзи використовуються для виготовлення різних пружин.

Фосфор у бронзах підвищує рідинотекучість. Фосфористі бронзи використовують для різних відливок.

Хромисті бронзи використовують у зварювальному виробництві.

Бронзи маркуються таким чином: Бр.ОЦС 6-6-3 (у ній міститься 6 % Sn,6 % Zn, 3 % Pb , решта – мідь).

9. Обробка металів тиском. Класифікація способів обробки металів. тиском. Вибір температурного інтервалу обробки металів тиском.

Обробка тиском ґрунтується на використанні пластичної деформації матеріалів, тому, в основному, обробці тиском підлягають пластичні матеріали. Розрізняють такі види обробки тиском: прокатування, пресування, волочіння, кування і штампування.





sdamzavas.net - 2017 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...