Главная Обратная связь

Дисциплины:






Холдейн Джон Бёрдон Сандерсон



 

 

Холдейн (Haldane) Джон Бёрдон Сандерсон (5.11.1892, Оксфорд, Англия, — 1.12.1964, г. Бхубанешвар, штат Орисса, Индия), английский биолог, член Лондонского королевского общества (1932). Член Коммунистической партии Великобритании (с 1937) и член Политбюро (1942—43), член политического комитета исполкома КПВ (1943—45). Сын Дж. С. Холдейна. Окончил Оксфордский университет (1914). В 1922—32 преподавал в Кембриджском университете; в 1933—57 заведующий кафедрой генетики и биометрии колледжа Лондонского университета. В 1957 переехал в Индию, где до 1961 возглавлял в г. Калькутта лабораторию генетики и биометрии, а с 1961 до 1964 аналогичную лабораторию в г. Бхубанешвар. Основные труды по генетике, биохимии, биометрии и математической статистике, подводной физиологии. Разработал математическую теорию моделирования гена и сцепления наследственных факторов, участвовал в становлении математической, молекулярной и биохимической генетики. Математически обосновал теорию кинетики ферментативного катализа ("Энзимы", 1930, рус. пер. 1934). Исследовал количественную сторону (темп) естественного и искусственного отбора, показав, что элементарная единица эволюции — не особь, а популяция ("Факторы эволюции", 1932, рус. пер. 1935). Определил частоту мутирования генов у человека (1935), ввёл понятие "генетического груза" (1937), вычислил вероятность возникновения мутаций в человеческих популяциях вследствие взрыва атомной бомбы (1947). Автор работ по философским вопросам естествознания ("Марксистская философия и науки", 1938, и др.). Подготовил первое издание "Диалектики природы" Ф. Энгельса на английском языке (1939) и написал к нему предисловие и примечания. Иностранный почётный член АН СССР (1942). Почётный член многих иностранных АН и научных обществ. В 1977 на юге Индии, восточнее г. Тируванантапурам, учрежден Международный мемориальный научно-исследовательский центр им. Холдейна.

 

 

Влади́мир Ива́нович Верна́дский (28 февраля (12 марта) 1863, Санкт-Петербург — 6 января 1945, Москва) — русский[1] и советский естествоиспытатель, мыслитель и общественный деятель XX века. Академик Императорской Санкт-Петербургской академии наук, один из основателей и первый президент Украинской академии наук. Создатель многих научных школ. Один из представителей русского космизма; создатель науки биогеохимии.

 

В круг его интересов входили геология и кристаллография, минералогия и геохимия, организаторская деятельность в науке и общественная деятельность, радиогеология и биология, биогеохимия и философия. Лауреат Сталинской премии I степени.



 

Научная деятельность

 

Деятельность Вернадского оказала огромное влияние на развитие наук о Земле, на становление и рост АН СССР, на мировоззрение многих людей.

 

Начиная с 1908 года В. И. Вернадский (в то время профессор Московского университета) постоянно проводил огромную работу по организации экспедиций и созданию лабораторной базы по поискам и изучению радиоактивных минералов[7]. В. И. Вернадский был одним из первых, кто понял огромную важность изучения радиоактивных процессов для всех сторон жизни общества.

После Октябрьской революции выехал на юг, стал одним из основателей и первым президентом (27 октября 1918) Украинской академии наук, состоял профессором и с 1920 по 1921 год ректором Таврического университета в Симферополе. В 1921 г. вернулся в Петроград, участвовал в создании Радиевого института. В период с 1922 по 1926 год работал за границей в Праге и Париже, читал лекции в Сорбонне, работал в Музее естественной истории и Институте Кюри, где исследовал паризий — вещество, ошибочно принятое за новый радиоактивный элемент. В Париже на французском языке вышел его фундаментальный труд «Геохимия».

В1926 г. продолжил творческую самостоятельную работу. Сформулировал концепцию биологической структуры океана. Согласно этой концепции, жизнь в океане сконцентрирована в «плёнках» — географических пограничных слоях различного масштаба.

В 1927 году организовал в Академии наук СССР Отдел живого вещества. Однако термин «живое вещество» он употреблял в смысле, отличном от работ О. Б. Лепешинской — как совокупность живых организмов биосферы[10].

Вернадским опубликовано более 700 научных трудов.

Основал новую науку — биогеохимию и сделал огромный вклад в геохимию. С 1927 года до самой смерти занимал должность директора Биогеохимической лаборатории при Академии наук СССР. Был учителем целой плеяды советских геохимиков.

Летом 1940 года по инициативе Вернадского начались исследования урана на получение ядерной энергии. С началом войны был эвакуирован в Казахстан, где создал свои книги «О состояниях пространства в геологических явлениях Земли. На фоне роста науки XX столетия» и «Химическое строение биосферы Земли и её окружения».

В 1943 году Вернадский возвратился из эвакуации и «за многолетние выдающиеся работы в области науки и техники» к 80-летию был удостоен Сталинской премии I степени.

Учение о биосфере и ноосфере

 

В структуре биосферы Вернадский выделял семь видов вещества:

живое;

биогенное (возникшее из живого или подвергшееся переработке);

косное (абиотическое, образованное вне жизни);

биокосное (возникшее на стыке живого и неживого; к биокосному, по Вернадскому, относится почва);

вещество в стадии радиоактивного распада;

рассеянные атомы;

вещество космического происхождения.

 

Вернадский был сторонником гипотезы панспермии. Методы и подходы кристаллографии Вернадский распространял на вещество живых организмов. Живое вещество развивается в реальном пространстве, которое обладает определённой структурой, симметрией и дисимметрией. Строение вещества соответствует некоему пространству, а их разнообразие свидетельствует о разнообразии пространств. Таким образом, живое и косное не могут иметь общее происхождение, они происходят из разных пространств, извечно находящихся рядом в Космосе. Некоторое время Вернадский связывал особенности пространства живого вещества с его предполагаемым неевклидовым характером, но по неясным причинам отказался от этой трактовки и стал объяснять пространство живого как единство пространства-времени.

 

Важным этапом необратимой эволюции биосферы Вернадский считал её переход в стадию ноосферы.

 

Основные предпосылки возникновения ноосферы:

расселение Homo sapiens по всей поверхности планеты и его победа в соревновании с другими биологическими видами;

развитие всепланетных систем связи, создание единой для человечества информационной системы;

открытие таких новых источников энергии как атомная, после чего деятельность человека становится важной геологической силой;

победа демократий и доступ к управлению широких народных масс;

всё более широкое вовлечение людей в занятия наукой, что также делает человечество геологической силой.

 

Работам Вернадского был свойствен исторический оптимизм: в необратимом развитии научного знания он видел единственное доказательство существования прогресса.

 


ПРОБИОНТЫ

Наиболее трудная часть проблемы возникновения жизни - переход от биополимеров к первым живым существам. Ученые пытаются найти ее решение на модельных экспериментах. Наибольшую известность получили опыты А.И. Опарина и его сотрудников. А.И. Опарин предположил, что переход от химической эволюции к биологической связан с возникновением простейших фазовообособленных органических систем - пробионтов, способных использовать из окружащей среды вещества и энергию и на этой основе осуществлять важнейшие жизненные функции - расти и подвергаться естественному отбору.

 

Наиболее перспективным объектом для моделирования подобной системы могут служить коацерватные капли. А.И. Опарин наблюдал, как в коллоидных растворах полипептидов, полисахаридов, РНК и других высокомолекулярных соединений при определенных условиях образуются сгустки объемом от 10 в -8 степени до 10 в -6 степени куб.см. Эти сгустки называются коацерватными каплями, или коацерватами . Вокруг капель имеется граница раздела, хорошо видимая в микроскоп. Коацерваты способны адсорбировать различные вещества. В них осмотически могут поступать из окружающей среды химические соединения и идти синтез новых соединений. Под действием механических сил коацерватные капли дробятся. Но коацерваты - еще не живые существа. Это лишь простейшие модели пробионтов, проявляющие лишь внешнее сходство с такими свойствами живого, как рост и обмен веществ с окружающей средой.

 

Особое значение в эволюции пробионтов сыграло формирование каталитических систем. Первыми катализаторами были простейшие соединения, соли железа, меди, других тяжелых металлов, но их действие было очень слабым. Постепенно на основе предбиологического отбора эволюционно формировались биологические катализаторы. Из огромного количества химических соединений, присутствующих в "первичном бульоне", отбирались наиболее эффективные в каталитическом отношении комбинации молекул. На определенном этапе эволюции простые катализаторы были заменены ферментами. Ферменты контролируют строго определенные реакции, и это имело огромное значение для совершенствования процесса обмена веществ.

 

Подлинное начало биологической эволюции ознаменовано возникновением нробионтов с кодовыми отношениями между белками и нуклеиновыми кислотами. Взаимодействие белков и нуклеиновых кислот обусловило возникновение таких свойств живого, как самовоспроизведение, сохранение наследственной информации и ее передача последующим поколениям. Вероятно, на более ранних этапах преджизни существовали независимые друг от друга молекулярные системы полипептидов и полинуклеидов с весьма несовершенным обменом веществ и механизмом самовоспроизведения. Огромный шаг вперед был сделан именно в тот момент, когда произошло их объединение: способность к самовоспроизводству нуклеиновых кислот дополнилась каталитической активностью белков. Пробионты, в которых обмен веществ сочетался со способностью к самовоспроизведению, имели наилучшую перспективу сохраниться в предбиологическом отборе. Дальнейшее их развитие уже полностью приобрело черты биологической эволюции, которая и осуществлялась на протяжении не менее чем 3,5 млрд. лет.

 

Кроме теории Опарина, существует теория, согласно которой жизнь началась с возникновения самовоспроизводящихся молекул нуклеиновых кислот. Следующим этапом было установление связей между ДНК и РНК и способность РНК синтезироваться на матрице ДНК. Установление связи ДНК и РНК с возникшими в результате абиогенного синтеза молекулами белков есть третий этап эволюции жизни.

 

 


БАКТЕРИИ

 

БАКТЕРИИ, обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место – зону, называемую нуклеоидом. Организмы с таким строением клеток называются прокариотами («доядерными») в отличие от всех остальных – эукариот («истинно ядерных»), ДНК которых находится в окруженном оболочкой ядре.

 

Бактерии, ранее считавшиеся микроскопическими растениями, сейчас выделены в самостоятельное царство Monera – одно из пяти в нынешней системе классификации наряду с растениями, животными, грибами и протистами.

 

Изучением бактерий занимается раздел микробиологии — бактериология.

 

 

 

 


ФОТОСИ́НТЕЗ, уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород) к акцептору — окислителю (СО2, ацетат) с образованием восстановленных соединений (углеводов) и выделением O2, если окисляется вода.

 

Фотосинтез играет ведущую роль в биосферных процессах, приводя в глобальных масштабах к образованию органического вещества из неорганического. Фотосинтезирующие организмы, используя солнечную энергию в реакциях фотосинтеза, осуществляют связь жизни на Земле со Вселенной и определяют в конечном итоге всю ее сложность и разнообразие. Гетеротрофные организмы — животные, грибы, большинство бактерий, а также бесхлорофилльные растения и водоросли — обязаны своим существованием автотрофным организмам — растениям-фотосинтетикам, создающим на Земле органическое вещество и восполняющим убыль кислорода в атмосфере. Человечество все более осознает очевидную истину, впервые научно обоснованную К.А. Тимирязевым и В.И. Вернадским: экологическое благополучие биосферы и существование самого человечества зависит от состояния растительного покрова нашей планеты.

 

 

 


Сине-зеленые водоросли (Cyanophyta), дробянки, точнее, фикохромовые дробянки (Schizophyceae), слизевые водоросли (Myxophyceae) — сколько различных названий получила от исследователей эта группа древнейших автотрофных растений! Страсти не утихли и до сих пор. Немало таких ученых, которые готовы исключить сине-зеленых из числа водорослей, а некоторые — вообще из царства растений. И не так, «с легкой руки», а с полной уверенностью, что они делают это на серьезной научной основе. «Виноваты» в такой судьбе сине-зеленые водоросли сами. Крайне своеобразное строение клеток, колоний и нитей, интересная биология, большой филогенетический возраст— все эти признаки отдельно и вместе взятые дают основу для множества трактовок систематики этой группы организмов.

 

Нет сомнений в том, что сине-зеленые водоросли — старейшая группа среди автотрофных организмов и среди организмов вообще. Остатки подобных им организмов найдены среди строматолитов (известковые образования с бугорчатой поверхностью и концентрически слоистым внутренним строением из докембрийских отложений), возраст которых составлял около трех миллиардов лет. Химический анализ обнаружил в этих остатках продукты разложения хлорофилла. Второе серьезное доказательство древности сине-зеленых водорослей — строение их клеток. Вместе с бактериями они объединены в одну группу под названием доядерных организмов (Procaryota). Разные систематики по-разному оценивают ранг этой группы — от класса до самостоятельного царства организмов, в зависимости от того, какое значение они придают отдельным признакам или уровню клеточного строения. В систематике сине-зеленых водорослей еще много неясного, большие разногласия возникают на каждом уровне их исследования.

 

Сине-зеленые водоросли встречаются во всевозможных и почти невозможных для существования местообитаниях, по всем континентам и водоемам Земли.

 

 

Строение клеток. По форме вегетативных клеток сине-зеленые водоросли можно разделить на две основные группы:

 

1) виды с более или менее шаровидными клетками (шаровидные, широкоэллипсоидные, груше- и яйцевидные);

 

2) виды с клетками, сильно вытянутыми (или сжатыми) в одном направлении (удлиненно-эллипсоидные, веретеновидные, цилиндрические — от короткоцилиндрических и бочонковидных до удлиненно-цилиндрических). Клетки живут отдельно, а иногда соединяются в колонии или образуют нити (последние также могут жить отдельно или образовывать дерновинки или студенистые колонии).

 

Клетки имеют довольно толстые стенки. В сущности, протопласт окружен здесь четырьмя оболочковыми слоями: двухслойная клеточная оболочка покрыта сверху внешней волнистой мембраной, а между протопластом и оболочкой находится еще и внутренняя клеточная мембрана. В образовании поперечной перегородки между клетками в нитях участвуют только внутренний слой оболочки и внутренняя мембрана; внешняя мембрана и внешний слой оболочки туда не заходят.

 

Строение клеточной стенки и другие микроструктуры клеток сине-зеленых водорослей изучали с помощью электронного микроскопа.

 

 

 

 

 





sdamzavas.net - 2017 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...