Главная Обратная связь

Дисциплины:






Ингибирование конечным продуктом



Метаболический путь — цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи — важный способ поддержания гомеостаза (относительного постоянства условий внутренней среды организма).

 

39. ГИДРОЛАЗЫ, класс ферментов, катализирующих гидролиз. Могут действовать на сложноэфирные и гликозидные связи, на связи С—О в простых эфирах, С—S в сульфидах, С—N в пет идах, и др.

Гидролазы, катализирующие гидролиз сложноэфирных связей (эстеразы), действуют на сложные эфиры карбоновых и тио-карбоновых к-т, моноэфиры фосфорной к-ты и др. К этому подклассу относятся, в частности, ферменты, играющие важную роль в метаболизме липидов, нуклеиновых к-т и нуклеозидов, напр. арилсульфатазы, ацетилхолинэстераза, дезоксирибонуклеазы, липазы, фосфатазы, фосфолипазы иэндодезоксирибонуклеазы.

Наиб. группу ферментов, расщепляющих гликозидные связи, представляют те, к-рые катализируют гидролиз олиго- и полисахаридов, напр. амилазы,лизоцим и нейраминидаза. Многие гидролазы этого подкласса специфичны к положению гликозидной связи и к конфигурации аномерного атома Суглевода.

Ферменты, катализирующие гидролиз связи С—N в пептидах и белках (пептидгидролазы),- самая многочисленная группа гидролаз. К ним относятсяферменты, отщепляющие одну или две аминокислоты с N- или С-конца полипептидной цепи (напр., аминопептидазы, карбоксипептидазы), а такжеэндопептидазы, или протеиназы, расщепляющие цепь вдали от концевых остатков. Последние классифицируют не по специфичности к субстрату, как остальные гидролазы, а по типу каталитически активных групп в активном центре. В соответствии с этим различают сериновые, тиоловые, карбоксильные и металлзависимые протеиназы. Пептидгидролазы играют важную роль не только в катаболизме белков и пептидов, но и в биол. регуляции (гормональной регуляции, активации проферментов, регуляции кровяного давления и солевого обмена и т.д.).

Ферменты, катализирующие гидролиз связей С—N в амидах, амидинах и нитрилах, играют важную роль в метаболизме амидов аминокислот(напр., аспарагина и глутамина), мочевины и ее производных (напр., барбитуратов), пуринов и пиримидинов и др. К гидролазам этого подкласса относятся, напр., аспарагиназы и уреаза.

Гидролазы, расщепляющие связь элемент-кислород в ангидридах неорг. к-т, действуют гл. обр. на фосфоангидридные связи в нуклеозиддифосфатах и нуклеозидтрифосфатах. В эту группу входят, напр., аденозилтрифосфатазы.



Разрыв связи С—С в 3-оксокарбоновых к-тах катализируется, напр., оксалоацетазой, превращающей ацетилщавелевую к-ту в щавелевую и уксусную. Др. подклассы гидролаз известны своими очень немногочисленными представителями.

Гидролазы-белки с мол. м. от 10-15 тыс. до 200-300 тыс. Они проявляют свою каталитич. активность, как правило, в отсутствие к.-л. кофакторов; лишь в нек-рых случаях необходимы ионы металлов-гл. обр. Zn2+ , Co2+ , Ca2+ , Mg2+ . Для небольшого числа гидролаз известна первичная, а для нек-рых и пространств. структура молекулы (напр., для лизоци-ма, пепсина, трипсина, химотрипсина). Отмечено значит. сходство структурыферментов одного подкласса, особенно в области активного центра. Так, мн. протеиназы имеют в активном центре одинаковую последовательность аминокислот: Gly Asp Ser Gly Gly Pro (обозначения см. в ст. Аминокислоты). Близкое строение имеет и активный центр рядаэстераз.

Каталитически активными группами в гидролазах являются: группа ОН остатка серина в химотрипсине, панкреатич. липазе, щелочной фосфатазе,аспарагиназе и др.; группа SH остатка цистеина, напр. в папаине; группа СООН остатков аспарагиновой и глутаминовой к-т в пепсине, лизоциме,карбоксипептидазе и др.; имидазольная группа остатка гистидина, напр. в рибонуклеазе, глюкозо-6-фосфатазе. Эти группы могут функционировать как нуклеоф. катализаторы, образуя с субстратом ковалентное промежут. соед., или как кислотно-основные катализаторы, способствуя отщеплениюпротона от молекулы Н2О, атакующей расщепляемую связь, и протонируя уходящую группу субстрата. Атомы металла в металлсодержащих гидролазах поляризуют расщепляемую связь, включая в свою координац. сферу молекулу Н2О, способствуя ее ионизации. Активность гидролаз подавляется многими специфич. ингибиторами. Так, сериновые протеиназы и эстеразы инактивируются фосфорорг. соед. (напр.,диизопропилфторфосфатом, зарином, зоманом), тиоловые гидролазы - реагентами на SH-группу (напр., N-этилимидом малеиновой к-ты), металлсодержащие ферменты - хелатообразующими реагентами (напр., этилендиаминтетрауксусной к-той).

Гидролазы находят применение в пром-сти, медицине и с. х-ве, напр. для получения сахарных сиропов из крахмала и целлюлозы, осветления и стабилизации соков и виноматериалов, лечения ожогов, заболеваний желудочно-кишечного тракта, тромбозов.

 

 

41.Трансферазы, общая характеристика. К этому классу относятся ферменты, которые ускоряют перенос (транспорт) атомов или групп атомов с одного вещества на другое. По химической природе почти все трансферазы двухкомпонентны, т.е. состоят из апофермента и кофермента. Содержатся только в клетках. В зависимости от характера переносимых групп различают несколько подклассов. Различают трансферазы, которые участвуют в переносе одноуглеродных остатков (2.1), альдегидной или кетонной группы (2.2), ацила (2.3), гликозила (2.4), алкильной или арильной группы (2.5), азотсодержащей группы (2.6), фосфорсодержащей группы (2.7), серосодержащей группы (2.8).





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...