Главная Обратная связь

Дисциплины:






Стадии цикла Кребса



  Субстраты Продукты Фермент Тип реакции Комментарий
Оксалоацетат + Ацетил-CoA + H2O Цитрат + CoA-SH Цитратсинтаза Альдольная конденсация лимитирующая стадия, превращает C4 оксалоацетат в С6
Цитрат цис-аконитат + H2O аконитаза Дегидратация обратимая изомеризация
цис-аконитат + H2O изоцитрат гидратация
Изоцитрат + NAD+ Оксалосукцинат+ NADH + H + изоцитратдегидрогеназадекарбоксилирующая Окисление образуется NADH (эквивалент 2.5 ATP)
Оксалосукцинат α-кетоглутарат+ CO2 декарбоксилирование необратимая стадия, образуется C5
α-кетоглутарат+ NAD+ + CoA-SH сукцинил-CoA + NADH + H+ + CO2 альфакетоглутаратдегидрогеназный комплекс (3 фермента) Окислительное декарбоксилирование образуется NADH (эквивалентно 2.5 АТФ), регенерация C4 цепи (освобождается CoA-SH)
сукцинил-CoA + GDP + Pi сукцинат + CoA-SH + GTP сукцинилкофермент А синтетаза субстратное фосфорилирование АДФ->ATP,[1] образуется 1 ATP (или 1 GTF)
сукцинат + убихинон (Q) фумарат + убихинол (QH2) сукцинатдегидрогеназа Окисление используется FAD как простетическая группа (FAD->FADH2 на первой стадии реакции) в ферменте,[2] образуется эквивалент 1.5 ATP
фумарат + H2O L-малат фумараза H2O-присоединение (гидратация)  
L-малат + NAD+ оксалоацетат + NADH + H+ малатдегидрогеназа окисление образуется NADH (эквивалентно 2.5 ATP)

Общее уравнение одного оборота цикла Кребса:

Ацетил-КоА → 2CO2 + КоА + 8e

Править]Регуляция цикла

Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса.

Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО2 + АТФ = Оксалоацетат (субстрат Цикла Кребса) + АДФ + Фн.



Функции

1. Интегративная функция — цикл является связующим звеном между реакциями анаболизма и катаболизма.

2. Катаболическая функция — превращение различных веществ в субстраты цикла:

· Жирные кислоты, пируват,Лей,Фен — Ацетил-КоА.

· Арг, Гис, Глу — α-кетоглутарат.

· Фен, тир — фумарат.

3. Анаболическая функция — использование субстратов цикла на синтез органических веществ:

· Оксалацетат — глюкоза, Асп, Асн.

· Сукцинил-КоА — синтез гема.

· CО2 — реакции карбоксилирования.

4. Водорододонорная функция — цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н+ и одного ФАДН2.

5. Энергетическая функция — 3 НАДН.Н+ дает 7.5 моль АТФ, 1 ФАДН2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

6. Анаплеротические реакции – это реакции клеточного метаболизма, повышающие кон центрацию субстратов ЦТК, образуя их в других метаболических путях.

Например:

1.Образование α кетоглутарата и оксалоацетата в реакциях трансаминирования аминокислот;
2.Образование α–кетоглутарата в глутаматдегидрогеназной реакции;
3.Образование ок салоацетата из пирувата в пируваткарбоксилазной реакции.

 

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенокрастений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].

2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.

3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].

4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].

5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].

6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозызависит осмотическое давление крови.

7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул вцитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клеткахпечени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Гиалуро́новая кислота́ (гиалурона́т, гиалурона́н) — несульфированный гликозаминогликан, входящий в составсоединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (слюне, синовиальной жидкости и др.). Принимает значительное участие в пролиферации и миграции клеток, может быть вовлечена в процесс развития злокачественных опухолей. Продуцируется некоторыми бактериями(напр. Streptococcus). В теле человека весом 70 кг в среднем содержится около 15 граммов гиалуроновой кислоты, треть из которой преобразуется (расщепляется или синтезируется) каждый день.[1] Структура гиалуроновой кислоты была установлена в 1950-х годах в лаборатории Карла Мейера (Karl Meyer).

Гиалуроновая кислота представляет собой поли-(2-ацетамидо-2-дезокси-D-глюко)-D-глюкуроногликан, то есть полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединённых поочерёдно β-1,4- и β-1,3-гликозидными связями (см. рисунок).

Молекула гиалуроновой кислоты может содержать до 25 000 таких дисахаридных звеньев. Природная гиалуроновая кислота имеет молекулярную массу от 5 000 до 20 000 000 Да. Средняя молекулярная масса полимера, содержащегося в синовиальной жидкости у человека составляет 3 140 000 Да.[3]

Молекула гиалуроновой кислоты является энергетически стабильной в частности благодаря стереохимии составляющих её дисахаридов. Объёмные заместители пиранозного кольца находятся в стерически выгодных положениях, в то время как меньшие по размеру атомы водорода занимают менее выгодные аксиальные позиции.

Гепари́н (от др.-греч. ἧπαρ — печень) — кислый серосодержащий гликозаминогликан; впервые выделен из печени. В клинической практике известен, как прямой антикоагулянт, то есть, как вещество, препятствующее свёртыванию крови. Применяется для профилактики и терапии тромбоэмболических заболеваний, при операциях на сердце и кровеносных сосудах, для поддержания жидкого состояния крови в аппаратах искусственного кровообращения и гемодиализа, а также для предотвращения свертывания крови при лабораторных исследованиях. Синтезируется в тучных клетках, скопления которых находятся в органах животных, особенно в печени,лёгких, стенках сосудов. Гепарин относится к семейству гликозаминогликанов; его молекула представлена несколькими полисахаридными цепями, связанными с общим белковым ядром. Белковое ядро же включает в свой состав в основном остатки двух аминокислот: серина и глицина. Приблизительно две трети сериновых остатков как раз и связывается с полисахаридными цепями. В основе последних лежит цепочка из повторяющихся дисахаридов - α-D-глюкозамин и уроновая кислоты, соединенные 1-4 гликозидными связями. Большинство остатков α-D-глюкозамина сульфатировано по амино- и гидроксильной группе; небольшая часть аминогрупп м. б. ацетилирована. Звенья уроновой кислоты представляют собой остатки L-идуроновой кислоты (~90%) или эпимерные остатки D-глюкуроновой кислоты (~10%). Благодаря наличию значительного количества отрицательно заряженных сульфатных и карбоксильных групп, молекула гепарина представляет собой сильный природный полианион, способный к образованию комплексов со многими белковыми и синтетическими соединениями поликатионной природы, несущими суммарный положительный заряд.

Длина полисахаридных цепей эндогенного гепарина может быть разной, а, значит, и молекулярная масса его тоже колеблется в широких пределах - от 3000 до 40000 дальтон. Средняя молекулярная масса «коммерческих» гепаринов, используемых в качестве лекарственных препаратов, колеблется в более узких пределах - от 12000 до 16000 дальтон. В последнее время была получена группа низкомолекулярных гепаринов, обладающая дополнительными свойствами.

Часто количество гепарина измеряется в единицах действия (ЕД) по его физиологической активности - способности предотвращать свертывание плазмы крови. Одна единица действия равна 0,0077 мг международного стандарта гепарина (в 1 мг препарата 130 ЕД).[2]

 

89. В печени из холестерина образуются желчные кислоты. Эти стероидные соединения с 24 атомами углерода являются производные холановой кислоты, имеющими от одной до трех α-гидроксильных групп и боковую цепь из 5 атомов углерода с карбоксильной группой на конце цепи. В организме человека наиболее важна холевая кислота. В желчи при слабощелочном рН она присутствует в виде холат-аниона.

Кроме холевой кислоты в желчи содержится также хенодезоксихолевая кислота. Она отличается от холевой отсутствием гидроксильной группы при С-12. Оба соединения принято называтьпервичными желчными кислотами. В количественном отношении это наиболее важные конечные продукты обмена холестерина.

Другие две кислоты, дезоксихолевая и литохолевая, называются вторичными желчными кислотами, поскольку они образуются путем дегидроксилирования по С-7 первичных кислот в желудочно-кишечном тракте. В печени образуются конъюгаты желчных кислот с аминокислотами (глицином или таурином ),связанные пептидной связью. Эти конъюгаты являются более сильными кислотами и присутствуют в желчи в форме солей (холатов и дезоксихолатов Na+ и К+, называемыхсолями желчных кислот).

В связи с наличием в структуре α-гидроксильных групп желчные кислоты и соли желчных кислот являются амфифильными соединениями и обладают свойствами детергентов. Основные функции желчных кислот состоят в образовании мицелл, эмульгировании жиров и солюбилизации липидов в кишечнике. Это повышает эффективность действия панкреатической липазы и способствует всасыванию липидов. молекулы желчных кислот фиксируются на мицелле своими неполярными частями, обеспечивая ее растворимость. Липаза агрегирует с желчными кислотами и гидролизует жиры (триацилглицерины), содержащиеся в жировой капле.

Этапы внешнего обмена липидов:

1.эмульгирование жиров пищи- необходимо,чтобы ферменты жкт могли начать работу

2.гидролиз триацилглицеролов, фосфолипидов и эфиров хс под влиянием ферментов ЖКТ

3.образование мицелл из продуктов переваривания(жирных кислот, холестерола)

4.всасывание образованных мицелл в эпителий кишечника

5.реасинтез триацилглицеролов, фосфолипидов и эфиров хс в энтероцитах.

После ресинтезе липидов в кишечнике они собираются в транспортные формы- хиломикроны (основные) и липопротеины высокой плотности(лпвп)(малое кол-во) и разносятся по организму

 





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...