Главная Обратная связь

Дисциплины:






Параллельная обработка данных



Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность. Оба вида параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения.

Параллельная обработка. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут -- принцип параллельности в действии!

Кстати, пионером в параллельной обработке потоков данных был академик А.А.Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу, посадив несколько десятков барышень с арифмометрами за столы. Барышни передавали данные друг другу просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была расчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Это, можно сказать, и была первая параллельная система. Хотя расчеты водородной бомбы были мастерски проведены, точность их была очень низкая, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.

Конвейерная обработка. Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят -- ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени -- ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).



Казалось бы конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! В чем же дело? Ответ прост, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых (1) в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и (2) сделать это за то же время, что машина прежде находилась на конвейере. Представте себестоимость такого автомобиля. Разве что Ламборгини приходит на ум, но потому и возникла конвейерная обработка...

Формы и уровни параллелизма реализованные в вычислительных системах и мипропроцессорах

Все наработки сделанные для больших вычислительных систем, с успехом могут быть применены и в микропроцессорной технике. Конвейеры, временной параллелизм

Конвейер, применительно к процессорам, является приемом, используемым при разработке для увеличения инструкционной пропускной способности (количеству инструкций, которые могут быть выполнены за определенный временной промежуток). Идея заключается в том, чтобы разделить обработку компьютерной инструкции на последовательности независимых шагов, с сохранением результатов в конце каждого шага. Это позволяет управляющим цепям компьютера получать инструкции со скоростью самого медленного шага обработки, но такое решение намного быстрее, чем выполнение всех этих шагов эксклюзивно для каждой инструкции.


Суперскалярность


Суперскалярность – архитектура, использующая несколько декодеров команд, которые могут нагружать работой множество исполнительных блоков.
Если в процессе работы команды, обрабатываемые конвейером, не противоречат друг другу и одна не зависит от результата другой, то такое устройство может распараллелить выполнение команд.
Исторически первыми суперскалярными процессорами были советские Эльбрусы.
Все современные x86 процессоры являются суперскалярными.





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...