Главная Обратная связь

Дисциплины:






СТРУКТУРА НУКЛЕИНОВЫХ КИСЛОТ



 

После работы Звери нуклеиновые кислоты начали пристально изучать. Обнаружилось, что они представляют собой огромные молекулы. После того как выяснилось, что предыдущие методы экстракции были слишком грубыми для расщепления молекул на фрагменты, были разработаны более тонкие методики. Они показали, что молекулы нуклеиновых кислот так же велики или даже больше, чем протеиновые молекулы.

Биохимик Эрвин Шаргафф расчленил молекулы нуклеиновых кислот и подверг фрагменты сепарации методом хроматографии. Он доказал, что в молекуле ДНК число пу-риновых групп равно числу пиримидиновых групп. Число же адениновых групп (пурин) обычно равно числу тиминовых групп (пиримидин), в то время как число гуаниновых групп (пурин) равно числу цитозиновых (пиримидин). Графически можно это выразить как А=Т и Г=Ц.

Британский физиолог Морис Хью Фредерик Уилкинс применил методику рентгеновской дифракции к структуре ДНК еще в 1950-х годах, и его коллеги биохимики Фрэнсис Комптон Крик и Джеймс Деви Уот-сон разработали молекулярную структуру, полученную экспериментально Уилкинсом.

Полинг как раз разработал теорию спиральной структуры протеинов, и Крик с Уотсоном взяли ее на вооружение в отношении данных, полученных Уйлкинсом. Однако в данном случае спираль должна была получиться двойная. Ученые предположили, что «остов» спирали составляют двойные сахаро-фосфатные цепочки, закручивающиеся вокруг общей оси и формирующие цилиндрическую молекулу. Пурины и ииримидины направлены внутрь, приближаясь к центру цилиндра. Чтобы сохранить диаметр цилиндра однородным, пурин (крупная составляющая) должен прилегать к пиримидину (малая составляющая). Специфически: А прилегает к Т, а Г прилегает к Ц. Именно таким образом объясняются наблюдения и выводы Шаргаффа.

Более того, в качестве ключевого шага в митозе можно теперь было взять удвоение хромосом (в качестве следствия этого факта — воспроизведение молекул вируса внутри клетки).

Каждая молекула ДНК производит свой собственный репликах: две сахаро-фосфат-ные нити раскручиваются и каждая служит моделью для нового «комплекта». Где бы ни находился аденин на данной нити, молекула тимина избирается из запаса, всегда наличествующего в клетке, и наоборот. Где бы ни находилась молекула гуанина, молекула цитозина избирается в пару ей, и наоборот. Вскоре после этих перестроений там, где была недавно двойная спираль, находятся уже две подобные ей двойные спирали.

 

 

Две правозакрученныс вокруг общей оси спиральные полинуклеотидные цепи.

А — аденин; Г — гуанин; Т — тимин; Ц — цитозин;

Ф — фосфатная группа; С — моносахарид

 



Если молекулы ДНК производили это вдоль линии хромосомы (или вируса), то образуются две идентичные хромосомы (или два вируса). Процесс не всегда, однако, идет гладко. Новая молекула ДНК слегка отличается от своего «предка», являясь мутацией, если в ходе удвоения произошли какие-то изменения. Эту модель представили научному миру Уотсон и Крик в 1953 г.

ГЕНЕТИЧЕСКИЙ КОД

Но как молекула нуклеиновой кислоты передает информацию о физических характеристиках? Ответ на этот вопрос был получен из работ американских генетиков Джорджа Уэлса Бидла и Эдварда Лари Тейтума. В 1941 г. они начали эксперименты со штаммом плесневого грибка Neurospora crassa, живущего на питательной среде, лишенной аминокислот. Плесень сама вырабатывала свои аминокислоты из простых азотных составляющих.

При обработке грибка рентгеновскими лучами происходили мутации, и некоторые из этих мутантов не могли вырабатывать собственные аминокислоты. Однако эти же аминокислоты нужны были грибку для роста. Ученые задались целью доказать, что неспособность к производству аминокислот объяснялась недостатком специфического энзима, которым обладал немутирующий штамм.

Они сделали заключение, что присутствие данного энзима — характерная функция определенного гена, который контролирует данный энзим. Содержащиеся в сперме и яйцеклетках нуклеиновые кислоты имеют определенный набор энзимов. Природа этих энзимов определяет биохимию клетки; наследственные характеристики определяются, в свою очередь, этой биохимией.

Производство энзимов генами должно выполняться посредниками, поскольку ДНК гена остается внутри ядра, а синтез протеинов происходит вне ядра. С применением электронного микроскопа клетка начала изучаться в новом и более тонком аспекте; было также найдено точное место производства протеинов.

Внутри клеток были отмечены структурированные гранулы, по размерам гораздо мельче митохондрий, которые были названы микросомами. К 1956 г. ученый Джордж Эмиль Палад доказал наличие РНК в составе микросом. Поэтому микросомы были переименованы в рибосомы, и именно в них, как оказалось, и происходил синтез протеинов.

Генетическая информация от хромосом должна достигать рибосом, и это осуществляется «посылкой» РНК. Структура определенной ДНК-молекулы «путешествует» с этими посланниками к рибосоме. Малые молекулы трансфер-РНК, впервые изученные американским биохимиком Малоном Хугландом, прикреплялись к специфическим аминокислотам, затем, неся аминокислоты, прикреплялись к определенным точкам на «РНК-посланниках».

Главная и еще неразрешенная проблема состояла в том, чтобы изучить, каким образом определенная молекула трансфер-РНК прикрепляется к определенной аминокислоте. Простейшим решением было, видимо, представить себе аминокислоту, прикрепляющуюся к пурину или пиримидину нуклеиновой кислоты; причем разные аминокислоты крепились то к пурину, то к пиримидину. В молекуле нуклеиновой кислоты около двадцати разных аминокислот и только четыре пурина и пиримидина. Поэтому становится понятным, что комбинация из но крайней мере трех нуклеотидов должна крепиться к каждой аминокислоте. Существует 64 различных возможных комбинации из трех нуклеотидов.

Эта проблема в 1960-х годов называлась проблемой генетического кода.

 





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...