Главная Обратная связь

Дисциплины:






Препроцессорные переменные



Препроцессорная переменная (макроимя) объявляется директивой

# defineидентификатор значение

Например:

# define L_NAME 6

# define END_FORMULA ‘;’

# define DEBUG

Если объявленное таким способом макроимя встретится в последующем тексте программы, оно будет заменено на соответствующее значение:

charnamevar [L_NAME]; // эквивалентно char namevar[6];

if ( c != END_FORMULA ) ...... // if ( c != ‘;’).....

Переменная DEBUG объявлена. но не имеет значения. В последующем тексте можно проверять. объявлено или нет это имя, и в зависимости от результата проверки включать или не включать в программу некоторые операторы.

Объявленное в defineмакроимя известно препроцессору от точки его объявления до конца файла или пока не встретится директива

# undef имя

Например, #undef DEBUG

Если в последующем тексте встретится имя DEBUG, оно будет рассматриваться как обычное, а не препроцессорное имя.

Имеется ряд предопределенных макроимен, предусмотренных стандартами на языки C и C++, в том числе:

_ _LINE_ _ - номер строки в исходном файле,

_ _FILE_ _ - имя обрабатываемого файла,

_ _DATE_ _ - дата начала обработки препроцессором,

_ _TIME_ _ - время начала обработки,

_ _STDC_ _ - программа должна соответствовать стандарту ANSI.

_ _cplusplus - компилировать программу в соответствии с синтаксисом Си++,

_ _PASCAL_ _ - последующие имена по умолчанию имеют тип “имя языка Pascal”

Предопределенные имена нельзя объявлять в #define или отменять в #undef.

Макросы FILE, DATE и TIME могут использоваться в сообщениях, выдаваемых в начале программы для указания, какая версия программы используется, например,

cout<< “\n Файл “ << __FILE__ << “ От “ << __DATE__ << “\n”;

Макрос PASCAL применяется при описании функций, предназначенных для использования в программах, написанных на языке Pascal, а также функций, вызываемых операционной системой Windows.

При программировании на Си директивы типа

#define MAX_LEN 80

обычно применяются для задания именованных констант. Введение описателя const в последние версии Си и в Си++ позволяет определять именованные константы так же, как и обычные переменные.

 

8 Базовые конструкции современных языков программирования С,С++,Java.

Кодировка

Технология Java, изначально спроектированная для Глобальной сети Интернет, должна быть многоязыковой, а значит обычный набор символов ASCII (AmericanStandardCodeforInformationInterchange), включающий в себя лишь латинский алфавит, цифры и простейшие специальные знаки (скобки, знаки препинания, арифметические операции и др.) не достаточен. Поэтому для записи текста программы применяется более универсальная кодировка Unicode. Как известно, Unicode представляет символы кодом из 2 байт, описывая, таким образом, 65535 символов. Первые 128 символов совпадают с набором ASCII. Но требуется некоторое специальное обозначение, чтобы иметь возможность задавать в программе любой символ Unicode. Например, если в программу нужно вставить знак с кодом 6917, необходимо его представить в шестнадцатеричном формате (1B05) и записать: \u1B05 причем буква u должна быть прописной, а шестнадцатеричные цифры A, B, C, D, E, F можно использовать произвольно, как заглавные, так и строчные. Таким образом, можно закодировать все символы Unicode от \u0000 до \uFFFF. Буквы русского алфавита начинаются с \u0410 (только буква Ё имеет код \u0401) по \u044F (код буквы ё \u0451).



Синтаксис языка Java во многом совпадает с синтаксисом C и C++. И действительно в Java сохранена лексика и основные синтаксические конструкции C++. Как и в C++ в Java определены унарные и бинарные арифметические, логические и битовые операции, несколько операций присваивания, тренарная условная операция, явные и неявные операции приведения типов (причем все перечисленные операции имеют такие же обозначения и приоритеты, что и соответствующие операции C/C++). Как и в C++ в Java определены управляющие операторы if, if-else, break, switch, return, while, do-while, for, continue (все перечисленные операторы имеют семантику аналогичную семантике соответствующих операторов C/C++). Как и в C++ в Java определены классы, имеющие закрытую (private), ограниченно доступную (protected) и общедоступную (public) части, классы служат шаблонами для порождения объектов, для классов определено отношение наследования (правда в Java отменено множественное наследование), определены конструкторы и деструкторы, указатель this, абстрактные классы.

В отличие от C++ Java позволяет писать надежные, безопасные, простые, удобные и легкие для понимания программы, хотя и более медленные, чем программы, написанные на C++.

Прежде всего были исключены указатели. Указатели или адреса в памяти - наиболее мощное средство написания высокоэффективных программ в окружении C/C++, но это и наиболее опасное средство этих языков. И дело даже не в том, что, как отмечают авторы языка Java, при недостаточно аккуратном обращении с указателями могут возникать трудно устранимые ошибки в C++-программе.

В языке Java нет указателей; все объекты программы расположены в куче (heap) и доступны по объектным ссылкам, которые представляют объекты во всех структурах, в которые могут входить объекты в качестве компонентов. Поскольку при работе с кучей программист не может пользоваться взаимным расположением объектов в памяти, это решение означает, что из языка Java исключена "кусочно-линейная" модель памяти системы C/C++, при которой массив - лишь точка (ячейка) памяти, на которую ссылается указатель этого массива; конечно, это решение исключило непосредственный доступ к памяти, но оно усложнило работу с элементами массивов и, естественно, является источником более низкой эффективности Java-программ по сравнению с C++-программами. Необходимо отметить, что объектные ссылки языка Java содержат информацию о классе объектов, на которые они ссылаются, так что объектные ссылки - это не указатели, а дескрипторы объектов. Наличие дескрипторов позволяет JavaVM выполнять проверку совместности типов на фазе интерпретации кода, возбуждая исключение в случае ошибки.

В Java пересмотрена и концепция C/C++ динамического распределения памяти. Исключена функция освобождения динамически выделенной памяти free(), так как работа с ней сочтена сложной и чреватой многими ошибками в программе, возможность которых уменьшает надежность C++-программ. Вместо этого в Java разработана и реализована система автоматического освобождения динамически выделенной памяти (сборщик мусора). Наличие механизма автоматической сборки мусора, естественное для интерпретируемого языка, усложняет разработку оптимизирующих компиляторов для такого языка.

Свойства, присутствующие в С и С++, и удаленные из Java

Конструкция typedef, препроцессор
Конструкция typedef была унаследована С++ из С. Из Java она выброшена совсем.
Необходимость в макропроцессоре также во многом отпала при написании программ на С++. Почти все, для чего использовались макрорасширения, можно было сделать более элегантным и надежным образом, используя конструкции самого языка.
Система неявно поощряла создание каждым программистом своего собственного подмножества языка, неизвестного остальному миру. По мере разрастания кодов увеличивается тот смысловой контекст, в котором компилятор интерпретирует каждую строку программы. Уже в проектах среднего размера существенно возрастает нагрузка на компилятор, не говоря уже о нагрузке на память программиста.
Единственная оставшаяся важная функция препроцессора -- позволить включение в программу файлы-заголовки с описаниями классом. Эта операция может быть выполнена более просто и эффективно, если позволить компилятору читать подготовленные бинарные файлы с описанием классов. Последний путь был выбран при создании языка Java.
Все эти соображения позволили полностью исключить необходимость использования текстового препроцессора в языке Java.
Struct и union
Структуры не имеют смысла в Java, их роль полностью выполняют классы. Использование конструкций типа union для типизованных объектов также больше не нужно -- язык позволяет определить тип объекта при исполнении программы.
Функции
Java чисто объектно-ориентированная система. Функции и процедуры, не привязанные к контексту какого-либо объекта, больше не присутствуют в системе.

Множественное наследование
Последовательная реализация концепции множественного наследования в С++ привела к существенным сложностям как в создании компиляторов, так и в использовании его (множественного наследования) в программах. В качестве альтернативы Java использует понятие интерфейса определяющего набор методов, которые должны быть определены в классе, реализующем этот интерфейс. Интерфейс может также содержать определение некоторых констант.
Перегрузка операторов
Опыт использования перегруженных операторов в С++ показывает, что они имеют смысл в довольно ограниченном наборе ситуаций. С другой стороны, злоупотребление этим свойством может сделать программу абсолютно непонятной. Единственное "встроенное" в язык Java исключение -- возможность использования оператора "+" для склеивания строк.

Надежность и безопасность
Java существенно облегчает создание надежного программного обеспечения. Кроме исчерпывающей проверки на этапе компиляции, система предусматривается анализ на этапе выполнения. Сам язык спроектирован так, чтобы вырабатывать у программиста привычку писать "правильно". Модель работы с памятью, в которой исключено использование указателей, делает невозможными целый класс ошибок, характерных для С и С++.

 





sdamzavas.net - 2019 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...