Главная Обратная связь

Дисциплины:






Люминесценция. Спектры люминесценции. Виды люминесценции. Закон Стокса для фотолюминесценции. Хемилюминесценция. Люминесцентная микроскопия.



Люминесценцией называют избыточное над тепловым излучение тела, имеющее длительность, значительно превышающую период (~10-15с) излучаемых световых волн.

Первая часть определения отделяет люминесценцию от равновесного теплового излучения. Люминесценция обычно наблюдается в видимой или ультрафиолетовых областях спектра. Тепловое излучение в этой области возникает только при температуре в несколько сотен или тысяч градусов, тогда как люминесценция наблюдается при любых температурах, поэтому люминесценцию часто называют холодным свечение.

Признак длительности в этом определении был предложен С. И. Вавиловым для того, чтобы отличить люминесценцию от некоторых других явлений вторичного свечения, например отражения или рассеяния света.

Люминесцируют электронно-возбужденные молекулы (атомы). В зависимости от способа возбуждения различают несколько типов люминесценции.

Люминесценция, вызванная заряженными частицами: ионами – ионолюминесценция, электронами – катодолюминесценция, ядерным излучением – радиолюминесценция. Люминесценцию под воздействием рентгеновского и Y(гамма)-излучения называют рентгенолюминесценцией, фотонов видимого света – фотолюминесценция. При растирании, раздавливании или раскалывании некоторых кристаллов возникает триболюминесценция. Электрическим полем возбуждается электролюминесценция, частным случаем которой является свечение газового разряда. Люминесценцию, сопровождающую экзотермическую химическую реакцию, называют хемилюминесценцией.

Спектры Люминесценции

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины волны испускаемого света. Наиболее простые — атомные спектры, в которых указанная выше зависимость определяется только электронным строением атома. Спектры молекул гораздо более сложные вследствие того, что в молекуле реализуются различные деформационные и валентные колебания. При охлаждении до сверхнизких температур сплошные спектры люминесценции органических соединений, растворенных в определенном растворителе, превращаются в квазилинейчатые. Это явление получило название эффекта Шпольского. Это ведёт к снижению предела обнаружения и повышению избирательности определений, расширению числа элементов, которые можно определять люминесцентным методом анализа.

Фотолюминесценцией называется излучение электромагнитной энергии, возбуждаемое в веществе под действием оптического излучения ультрафиолетового или видимого диапазонов, избыточное по сравнению с тепловым излучением, при условии, что такое избыточное излучение имеет длительность, превышающую период электромагнитных колебаний (люминесценция) и время релаксационных процессов. Если облучить вещество (люминофор) в любом агрегатном состоянии ультрафиолетовым или видимым электромагнитным излучением, то возможно появление задержанного не менее, чем на 10-12 - 10-10 с, люминесцентного излучения. Максимум спектра этого излучения сдвинут относительно максимума спектра возбуждающего излучения в сторону меньших частот (закон Стокса - Ломмеля).



Хемилюминесценция — люминесценция (свечение) тел, вызванная химическим воздействием или при протекании химической реакции.Хемилюминесценция связана с экзотермическими химическими процессами.

Хемилюминесценция применяется для оценки состава сложных газовых смесей, в частности, наличия примесей в атмосфере. Достоинством этого метода является легкость автоматизации измерения и высокая селективность. Недостаток — ограниченный перечень анализируемых веществ.

Люминесцентная микроскопия – метод микроскопии, позволяющий наблюдать первичную или вторичную люминесценцию микроорганизмов, клеток, тканей или отдельных структур, входящих в их состав.

Цвет люминесценции, т.е. длина волны излучаемого света зависит от химической структуры и от физико–химического состояния микроскопируемого объекта, что и обусловливает возможность использования л.м. в целях микробиологической и цитологической диагностики, для дифференцирования отдельных компонентов клеток.

Люминесцентный микроскоп снабжен мощным источником освещения с большой поверхностной яркостью, максимум излучения которого находится в коротковолновой области видимого спектра, системой светофильтров, а также интерференционной светоделительной пластинкой, применяемой при возбуждении люминесценции падающим светом.

Источниками освещения для люминесцентного микроскопа чаще являются ртутно-кварцевые лампы сверхвысокого давления, а также лампы накаливания: ксеноновые и кварцево-галогенные.

Для возбуждения люминесценции при люминесцентной микроскопии обычно используют длинноволновую ультрафиолетовую, сине-фиолетовую, а иногда и зелёную область спектра, в люминесцентном микроскопе применяют обычно стеклянную оптику и обычные предметные и покровные стёкла, пропускающие излучение в этой части спектра и не обладающие собственной люминесценцией. Иммерсионные и заключающие среды также должны соответствовать этим требованиям.

Основными преимуществами Люминесцентной микроскопии являются высокая чувствительность (чувствительнее обычных цито- и гистохим. методов не менее чем в 1000 раз), легкость количественного измерения содержания различных хим. компонентов ткани и клеток, доступность аппаратуры. Для Л. м. органов и тканей используют первичную и вторичную люминесценцию.





sdamzavas.net - 2018 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...