Главная Обратная связь

Дисциплины:






АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЦЕЛЫМИ ЧИСЛАМИ



Сложение и вычитание. В большинстве компьютеров операция вычитания не используетсяю. Вместо неё производится сложение уменьшаемого с обратным или дополнительным кодом вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.

При сложении обратных кодов чисел А и B имеет место чеиыре основных и два особых случая. Рассмотрим их.

Случай 1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю.

Десятичная запись: Двоичные коды:

 
 
0 0000011 + 0 0000111 0 0001010


+

7

 

 

Получен правильный результат.

Случай 2. А положительное, В отрицательное и по абсолютной величине больше, чем А . Приведем пример.

Десятичная запись Двоичные коды

+

-10

-7

 

 

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111=-710

 

Случай 3. А положительное, В отрицательное и по абсолютной величине меньше, чем А . Приведем пример.

 

 

Десятичная запись Двоичные коды

+

-3

 

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

 

Случай 4.А и В отрицательные. Приведем пример.

Десятичная запись Двоичные коды

-3

+

-7

-10

Полученный первоначальный неправильны результат (обратный код числа -1110) вместо обратного кода числа -1010) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы. При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010= -1010.

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа.Дляобнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

 

Случай 5. А и В положительные, сумма А и В больше либо равна 2n-1,где n – количество разрядов количество разрядов для однобайтового формата n=8, 2n-1=2-7=128). Приведем пример.

 

Десятичная запись: Двоичные коды:

 

65 0 1000001

+ + 0 1100001

97 1 0100010 Переполнение

 

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (16210=101000102), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.



 

Случай 6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2n-1. Приведем пример.

 

Десятичная запись: Двоичные коды:

 

-63 1 10000000 Обратный код числа -63

+ +

-951 0100000 Обратный код числа -95

-158 01100000 Переполнение

+1

 

 

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Все рассмотренные случаи имеют место и при сложении дополнительных кодов чисел.

 

Случай 1. А и В положительные. Здесь нет отличия от случая 1, рассмотренного для обратного кода.

Случай 2. А положительное, В отрицательное и по абсолютной величине больше, чем А. Приведем пример.

 

Десятичная запись: Двоичные коды:

 

3 00000011

+ +11110110 Дополнительный код числа -10

-10 11111001 Дополнительный код числа -7

-7

 

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвентируются и к младшему разряду прибавляется единица: 1 0000110+1 0000111=-710.

 

Случай 3. А положительное, В отрицательное и по абсолютной величине меньше, чем А. Приведем пример.

 

Десятичная запись: Двоичные коды:

 

10 00001010

+ +11111101 Дополнительный код числа -3

-3 00000111

7

перенос отбрасывается

 

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

 

Случай 4. А и В отрицательные и по абсолютной величине меньше, чем А. Приведем пример.

 

Десятичная запись: Двоичные коды:

 

-3 11111101 Дополнительный код числа -3

+ +11111001 Дополнительный код числа -7

-7 11110110 Дополнительный код числа -10

-10

перенос отбрасывается

 

Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнениядля дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

 

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, таккак последнее состоит из двух шагов – образования обратного кода и прибавления единицы к его младшему разряду; время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов,потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

 

· Умножение и деление. Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число «нуль».в процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции – окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Умножим 1100112 на 1011012.

Пример.Накапливающий сумматор: Множитель:

0 0 0 0 0 0 0 0 0 0 0 0 101101

+ 1 1 0 0 1 1

1 1 0 0 1 1 101100

+

1 1 0 0 1 1 Сдвиг на две позиции влево

1 1 1 1 1 1 1 1 101000

+ 1 1 0 0 1 1_____

1 0 1 0 0 1 0 1 1 1 100000

+ 1 1 0 0 1 1 Сдвиг на две позиции влево

1 0 0 0 1 1 1 1 0 1 1 1 000000

 

Делениедля компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

 





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...