Главная Обратная связь

Дисциплины:






Вычисление определенного интеграла



 

Пусть функция y=f(x) определена и непрерывна на отрезке [a,b]. Тогда она интегрируема как на отрезке [a,b], так и на любом меньшем отрезке [а,х], где [a,b]. Значит, величина

является функцией от х. Она называется интегралом с переменным верхним пределом и является первообразной для функции f(x). Другими словами, функция Ф(х) в каждой своей точке имеет производную, равную f(x):

.

 

Теперь перейдем к вопросу вычисления определенного интеграла.

Теорема. Пусть функция y=f(x) определена и непрерывна на отрезке [a,b] и F(х) является первообразной для функции f(x). Тогда

.

(Эта основная формула интегрального исчисления называется формулой Ньютона-Лейбница. Она позволяет сводить вычисление определенного интеграла к нахождению первообразной.)

Док-во. Пусть функция y=f(x) имеет некоторую первообразную F(x). Тогда F(x)=Ф(x)+C, где - другая первообразная f(x). Имеем:

.

 

Пример.

1-6+9-27+54-27=4.

 

 

Замена переменной в определенном интеграле.

 

Теорема. Пусть функция y=f(x) непрерывна на отрезке [a,b], а функция x=φ(t) определена на отрезке [α,β] и имеет непрерывную производную внутри этого отрезка, причем φ(α)=a, φ(β)=b и φ([α,β])=[a,b]. Тогда

.

Док-во. Пусть F(x) – первообразная для функции f(x), тогда и . Тогда

.▲

Пример. Найти .

Применим подстановку . Найдем новые пределы интегрирования: при ; при .

.

 

 

Интегрирование по частям в определенном интеграле.

Если функции и непрерывны вместе со своими производными на отрезке , то имеет место следующая формула интегрирования по частям:

.

Пример. Найти

.

Решение. Воспользуемся формулой интегрирования по частям. Полагая , , имеем: .

Следовательно:

.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...