Главная Обратная связь

Дисциплины:






Несобственные интегралы от неограниченных функций



 

Пусть функция y=f(x) определена на промежутке . В точке в функция не ограничена, но ограничена в отрезке (точку в назовем тогда особой точкой). Тогда несобственным интегралом от неограниченной функции y=f(x) называют предел функции верхнего предела интегрирования при слева:

= .

Если указанный предел существует и конечен, то говорят, что несобственный интеграл сходится (в противном случае – расходится).

 

Аналогично, если а – особая точка: если функция не ограничена в точке а, но ограничена на любом меньшем отрезке , то несобственный интеграл определяют так:

.

Если единственной особой точкой на отрезке [a,b] является точка , то полагают

при условии, что оба несобственных интеграла в правой части сходятся.

Если особых точек на отрезке [a,b] несколько, то отрезок разбивают таким образом, чтобы в каждой части было не более одной особой точки и используют последнее определение.

Для вычисления несобственных интегралов от неограниченных функций также может быть использован аналог формулы Ньютона − Лейбница. Например, для несобственного интеграла с особыми точками а и в :

,

где , .

 

Пример 1. Найти интеграл .

Данный интеграл – несобственный, т.к. подынтегральная функция на отрезке интегрирования имеет особую точку х=0. Тогда

.

Или по упрощенной формуле (Ньютона – Лейбница):

.

Пример 2. Найти интеграл .

Подынтегральная функция имеет на промежутке интегрирования единственную особую точку х=1.

= .

Следовательно, данный несобственный интеграл расходится.

 

Пример 3. Найти интеграл .

Имеем несобственный интеграл с особой точкой х=2. Тогда

Следовательно, данный несобственный интеграл сходится к значению 6.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...