Главная Обратная связь

Дисциплины:






Свойства математического ожидания



Числовые характеристики дискретных случайных величин

Числа, которые описывают случайную величину суммарно, называют числовыми характеристиками случайной величины.
Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:
,
где – возможные значения случайной величины , а – соответствующие вероятности.
Замечание. Вышеприведенная формула справедлива для дискретной случайной величины, число возможных значений которой конечно. Если же случайная величина имеет счетное число возможных значений, то для нахождения математического ожидания используют формулу:
,
причем это математическое ожидание существует при выполнении соответствующего условия сходимости числового ряда в правой части равенства.
Вероятностный смысл математического ожидания: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

 

Свойства математического ожидания

1.Математическое ожидание постоянной величины равно самой постоянной:
.
2.Постоянный множитель можно вынести за знак математического ожидания:
.
3.Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
.
Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.
4.Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:
.
Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пусть производится независимых испытаний, в каждом из которых вероятность появления события постоянна и равна . Тогда справедлива следующая теорема.
Теорема. Математическое ожидание числа появлений события в независимых испытаниях равно произведению числа испытаний на вероятность появления этого события в каждом испытании:
.

Разность между случайной величиной и ее математическим ожиданием называется отклонением.
Теорема. Математическое ожидание отклонения равно нулю:
.
Дисперсией дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величиной от ее математического ожидания:
.
Дисперсия имеет размерность, равную квадрату размерности случайной величины.
Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания:
.



 

Свойства дисперсии

1.Дисперсия постоянной величины равно нулю:
.
2.Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
.
3.Дисперсия суммы двух независимых случайных величин равно сумме дисперсий этих случайных величин:
.
Следствие. Дисперсия суммы нескольких взаимно независимых случайных величин равно сумме дисперсий этих величин.
4.Дисперсия разности двух независимых случайных величин равно сумме дисперсий этих случайных величин:
.

Теорема. Дисперсия числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события постоянна, равна произведению числа испытаний на вероятность появления и вероятность непоявления этого события в одном испытании:
.

Средним квадратическим отклонением случайной величины называют квадратный корень из дисперсии:
.
Размерность среднего квадратического отклонения совпадает с размерностью самой случайной величины.

 





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...