Главная Обратная связь

Дисциплины:






Интегрирование тригонометрических выражений



Интегрирование выр R(cosx,sinx); Рационализация òR(cosx,sinx)dx достигается подстановкой t=tg(x/2) (-p<x<p), (универсальная); sinx=2tg(x/2)/(1+tg²(x/2))=2t/(1+t²), cosx=(1-tg²(x/2))/(1+tg²(x/2))=(1-t²)/(1+t²), x=2arctgt, dx=2dt/(1+t²), Þ òR(cosx,sinx)dx=òR(1-t²)/(1+t²),2t/(1+t²))×2dt/(1+t²)= òR1(t)dt{}Если функция R(x, у) обладает свойствами четности или нечетности по переменным х или у, то могут упот­ребляться и другие подстановки, также рационализиру­ющие интеграл.Пусть R(u,v)=P(u,v)/Q(u,v) (u=cosx, v=sinx).где P и Q—многочлены от u и v. 1) Если один из многочленов P Q четный по v, a другой—нечетный по и, то подстановка t=cosx рацио­нализирует интеграл. 2) Если один из многочленов Р, Q четный по и, а другой—нечетный по и, то подстановка t=sinx рацио­нализирует интеграл. 3) Если Р и Q: а) оба не изменяются при замене и, v соответственно на —и, —v или б) оба меняют знак, то интеграл рационализируется подстановкой t = tg x (или t=ctgx).

 

Определенный интеграл. Ограниченность интегрируемой функции. {O}Разбиением t[a,b] называется произвольное мн-во точек xi, I=0,1,…,it удовлетворяющее условию x0=a<x1<x2<…<xit-1<xit{} Каждый из отрезков [xi-1,xi] называется отрезком разбиения t{} Пусть ф-ция y=f(x) определена на [a,b] и t произвольное разбиение этого отрезка, в каждом отрезке разбиения в произвольном образе выберем (.) xiÎ[xi-1,xi] I=1,..,it и рассмотрим сумму st(f,x1,…,xit)=åI=1ixf(xI)Dx; -интегральная сумма {Определение} Число I –называется опред ò ф-ции y=f(x) на отр[a;b] и обозначается aòbf(x)dx Если " E >0 $dE=d(E)>0 | при любом разбиении s мелкости |t|<dE и любом выборе (.) xiÎ[xi-1,xi], I=1,…,it | åI=1itf(xi)Dx-I | <E При этом пишут I=limst |t|®0 {T}Если ф-ция интегрируема на отр. [a,b] то она ограничина на этом отрезке {Док-во} Пусть ф-ция y=f(x) интегрируема на [a,b] но не является ограниченным. на этом отрезке. На этом отрезке рассмотрим произвольное разбиение t отрезка [a,b] то она ограничена хотя бы на одном на одном отр. разбиения. Пусть это будет отр.[xj0-1,xj0] Тогда на этом отрезке существует последовательность точек $ {xnjo}>0 | limn®¥f(xnjo)=¥ Рассмотрим сумму stI=1itf(xI)Dxi=f(xio)Dxjo +åI=1itf(x)Dxi=f(xjo)Dxjo+B Зафиксируем произвольным образом xiÎ[xi-1,xi] i¹jo limst(f,x1,…,x0n,..,xit)=lim(f(xjo)Dxjo+B)=¥ m>0 существует n0 | st(f,x1,…,xjo(n),…,xit)>m Отсюда Þ, что интегральная сумма при мелкости разбеения |t|®0 не могут стремится ни к какому конечному результату. Предположим, что $ I=lim|t|®0stÞ"E>0 $dE>0 | "t, |t|<dE и любой выбор точек xi выполняется нер-во |dt-I|<EÞ|dt|=|dt-I+I|<|dt-I|+|I| <E+|I| ; M=E+|I| при любом разбиении t в частности при при |t|<dE можно выбрать точки x1,..,xit такие, что |st|>M Þф-ция не может быть не ограничена на отр[a,b]. Ч.Т.Д.



 

 

Свойства определенного интеграла {O}Для ф-ции y=f(x) определённой в (.) а положим по определению аòa f(x)dx=0, а для ф-ции y=f(x) интегрируемой на отр.[a,b] положим по опред bòaf(x)dx=-aòbf(x)dx {Св-во1} aòbdx=b-a действительно ф-ция f(x)º1 на [a,b] по этому при любом разбиении t и любом выборе (.) xi f(xi)=1Þsti=1itf(xi)Dxi=åi=1itDx1=(x1-x0)+(x2-x1)+(x3-x2)+…+(xit-xt-1)=xit-x0=b-a Þ lim|t|®0st=b-a {Св-во2} Пусть f,g интегрируемы на отр [a,b] , тогда ф-ция f+g также интегрируема на отр[а,b] и имет место равенство: aòb(f(x)+g(x))dx= aòbf(x)dx+ aòbg(x)dx {док} Пусть t={xi} i=it i=o xiÎ[xi-1,xi] ,тогда sE(f+g)=åi=1it(f(xi)+g(xi)Dxi=åiti=1f(xi)Dxi+åiti=1g(xi)Dxi=st(f)+st(g) Т.к. f и g - интегриремы на [a,b] то $lim|t|®0st(f)=aòbf(x)dx; $lim|t|®0st(g)=aòbg(x)dx ; $lim|t|®0st(f+g)=aòbf(x)dx+aòbg(x)dx т.о. ф-ция f+g -интегрируема на отр[a,b] и имеет место равенство aòb(f(x)+g(x))dx=lim|t|®0st(f+g)=aòbf(x)dx+aòbg(x)dx {Св-во №3}Пусть ф-ция y=f(x) интегрируема на отр[a,b] тогда для любого действительного числа l ф-ция l×f(x) - интегрируема на отр [a,b] и имеет место равенство aòblf(x)dx=laòbf(x)dx {Св-во 4} Пусть a<c<b и ф-ция y=f(x) интегрируема на отр[a,c] и [b,c] тогда она интегрируема на отр[a,b] и имеет место равенство: aòbf(x)dx=aòсf(x)dx+сòbf(x)dx {Св-во№5} Если y=f(x) интегрируема на отр [a,b] то она интегрируема на любом отр [c,d] Î[a.b] лежащем в этом отрезке. {Св-во№6} Если ф-ции f и g интегрируемы на [a,b] то ф-ция f-g также интегрируема на [a,b] {Св-во №7} Пусоть f(x) - итегр-ма на [a,b] и на этом отр inf|f(x)|>0 ($ M>0 | " xÎ[a,b] |f(x)|>M) Тогда 1/f(x) - также интегрируема на [a,b] {Св-во} Пусьт f(x) -интегр-ма на [a,b] и "хÎ[a,b] f(x)³0 тогдаÞ aòbf(x)dx³0

 

Теорема о среднем. {T о среднем} Пусть 1) f и g интегрируема на [a,b]; 2) m<=f(x)<=M, для "хÎ[a,b]; 3) На отр.[a,b] ф-ция g(x) Сохраняет знак. т.е. она либо не положительна, либо не отрицательна тогда сущ $m | m£m£M и aòbf(x)g(x)dx=m×aòbg(x)dx {Док-во} Т.к. на отр[a,b] m£f(x)£M то умножив это нер-во на g(x) получим mg(x)£f(x)g(x)£Mg(x) при g(x)³0; mg(x)³f(x)g(x)³Mg(x) при g(x)£0; Т.к. f и g интегрируемы на [a,b] то интегрируя нер-во получим maòbg(x)dx£aòbf(x)g(x)dx£Maòbg(x)dx при g(x)³0; maòbg(x)dx³aòbf(x)g(x)dx³Maòbg(x)dx при g(x)£0; Если aòbg(x)dx=0 то из полученного нер-ва находим : aòbf(x)g(x)dx=0 Þ рав-во aòbf(x)g(x)dx=maòbg(x)dx выполнено при любом m; Пусть aòbg(x)dx¹0 Þ при g(x)³0 aòbg(x)dx>0, а при g(x)£0 aòbg(x)dx<0; Разделим нер-ва на aòbg(x)dx в обоих случаях получим : m£aòbf(x)g(x)dx/aòbg(x)dx£M; Пологая m=aòbf(x)g(x)dx/aòbg(x)dx Þ получаем утверждение теоремы aòbf(x)g(x)dx=maòbg(x)dx {Следствие} При дополнительном предположении что ф-ция y=f(x) непрывна на отр[a,b] существует xÎ[a,b] такое, что aòbf(x)g(x)dx=f(x)×aòbg(x)dx

 

 





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...