Главная Обратная связь

Дисциплины:






Площадь плоской фигуры



(Площадь плоской фигуры) Заключим фигуру Р в прямоугольник со сторонами параллельными осм Ох и Оу прямоуг обозн R; Разабьём прам R на мн-во мелких прямоуг.; Обозначим А фигуру полученную объединением прямоуг , целиком лежащих в плоскости R, а через В фигуру полученную объедин прямоугольников лежащих в Р. A-òA B-òB ; Пусть d- наибольшая диагональ прямоугольников разбиения, если при d®0 òA и òB ® к одному и томуже пределу, то фигура Р-наз квадрируемой, а её площадь считается равной ò; Пусть ф-ция f(x) –непрерывна на [a,b] и f(x)³0 "xÎ[a;b] и ограничена снизу осью Ох а по бокам x=a, x=b. Пусть t={xi}i=0i=it-произвольное разбиение отр [a,b]; git={(x,y), xÎ[xi-1,xi], 0£y£mi=inff(x)} Git={(x,y), xÎ[xi-1,xi], 0£y£Mi=supf(x)}; Sgti=1itmiDxi; SGti=1itMiDxi {T} Для того, чтобы ф-ция f(x) огр на [a,b] была интегрируема на этом отр. необходимо и достаточно : lim|t|®0(Sgt-SGt)=0 {Д} т.к. ф-ция f(x) –нерерывна на отр[a,b] то она интегрируема на этом отр. Þ по критерию итегрируемости lim|t|®0SGt= lim|t|®0Sgt=S= aòbf(x)dx {сектор} Сектор ограничен кривой r=f(j), где f(j) – непрерывна на [a,b] и f(j)³0 "jÎ[a,b] {} Пусь t-произвольное разбиение git={(j,r), jÎ[ji-1,ji], 0£r£mi=inff(j)} Git={(j,r), jÎ[ji-1,ji], 0£r£Mi=supf(j)} Т.к. ф-ция f(x)-непрерывна на отр[a,b] то она интегрируема на этом отрезкеÞ Площадь сектора git=m²iDj/2 и Git=M²iDj/2; Sgt=1/2×åi=1itm²iDj SGt=1/2×åi=1itM²iDj по критерии итегрируемости Þ lim|t|®0SGt= lim|t|®0Sgt=S=1/2× aòtf²(j)djÞ P-квадрируема и Sp=1/2× aòbf²(j)dj.

 

 

Несобственные интефалы. Основные определения и свойства.Пустьy=f(x) определна на [a,+¥) и интегрмруем на " [a;b] Þ несобственный интеграл по промежутку [a,+¥) под ф-ей f(x) обозначен следующий предел aò+¥f(x)dx=limb®+¥ aòbf(x)dx. Если указанный предел конечен ,то интеграл aò+¥f(x)dx называется сходящимся, если бесконечен или не существует, то расходящийся. {} Пусть сÎ[a,+¥) Þ aòbf(x)dx= aòcf(x)dx+ còbf(x)dx {Т} По св-ву пределов aò+¥f(x)dx cущ Û когда сущ limb®+¥ aòbf(x)dx {Док} Существование интеграла (2) эквивалентно существованию предела, что в свою очередь эквивалентно выполнению условия Коши: для любого E > 0 существует b0 где а < b0 < b, такое, что выполняется неравенство |F(b’’)-F(b’) для всех b' и b", удовлетворяющих неравенствам b0 < b' < b" < b. Но F(b’’)-F(b’)=bòb’’f(x)dx Þ теорема доказана. {O} Несобственным интегралом по промежутку (a;b] от ф-ции f(x) называется следующий предел aòbf(x)dx= limx®a+0 aòbf(x)dx. Если указанный предел конечен то ò называется сход, если бесконечен или не сущ то расх. {О} aòсf(x)dx и сòbf(x)dx при a<c<b –сходятся одновременно то aòbf(x)dx- также сходится. {Св-ва} f(x) определена на [a,b) интегрируема на любом отр. a<h<b и f(x)®¥ при х®b-0, если b<+¥ {Св1} aòbf(x)dx= limh®b-0 F(h)-F(a)=F(x)|ba $aòbf(x)dx Û $limh®b-0 F(h) {Д} Пусть a<h<b тогда по ф-ле Ньютона-Лейбница aòbf(x)dx=F(h)-F(a) Þ по св-ву пределов aòbf(x)dx= limh®b-0 F(h)-F(A){2} aòbf1(x)dx и aòbf2(x)dx -сходятся, то aòb (mf1(x)+l aòbf2(x))dx=m aòbf1(x)dx+l aòbf2(x)dx {До} Пусть a<h<b aòh (mf1(x+lf2(x))dx= maòh f1(x)dx+laòh f2(x)dx т.к. по усл. теор $limh®b-0aòh f1(x)dx и $limh®b-0aòh f2(x)dx то сущ левой части полученного равенства Þ переходя в этом рав-ве к пред. получ утв{3}Если f(x)<=g(x), xÎ[a,b] b aòbf(x)dx, aòbg(x)dx – сход , то aòbf(x)dx<= aòbg(x)dx {Д} a<h<b Þ aòhf(x)dx<= aòhg(x)dx переходя в данном нер-ве к limh®b-0 получаем утв{4} Пусть u(x) и v(x) –непрерыны вместе со своими производными на [a,b) Þ aòbu(x)v’(x)dx=u(x)v(x)|ba- aòbu’(x)v(x)dx {Д} Пусть a<h<b тогда по ф-ле интегрирования по частям для опр aòhu(x)×v’(x)dx = y(x)v(x)|ah - aòhu’(x)×v(x)dx Þ по св-ву пределов Если сущ пределы любых выражений в последнем равенстве то сущ предел 3-его ; При сущ ук пределов переходя в последнем рав-ве к пред пол. утв.; {5} f(x) непрерывно на [a,b), x=j(t) непрерывна вместе со своей производной на [a,b) и возрастает на этом промежутке, причём для a<=t<b Þa<=j(t)<b=limt®b-0j(t) тогда имеет место : aòbf(x)dx= aòbf(j(t))j’(t)dt {Д} Пусть xÎ[a,b) т.к. ф-ция непр на [a,b) то она отрораж. отр [a,x] на [a,j(x)] Þ по теореме о замене переменной в опред ò получ утв.



 

Несобственные интегралы от неотрицательных функций. Признак сравнения и предель­ный признак сравнения.

Будем считать что f(x) определён на [a,b) -¥<a<b£+¥ {T1} Пусть f(x)³0 "xÎ[a,b) и интегрируема на любом отрезке [a,h]. Для того чтобы интеграл aòbf(x)dx сходился необходимо и достаточно, чтобы все интегралы aòhf(x)dx, a<h<b были ограничены в совокупности т.е. $ M>0 | aòhf(x)dx<M {T2 признак сравнения} Пусть функция f(x) и g(x) не отрицательные на промежутке [a;b) и f(x)=O(g(x)), x®b-0, тогда если aòbg(x)dx- сходится, Þ сходится и aòbf(x)dx Если aòbg(x)dx – расход Þ aòbf(x)dx – расход. {Док-во} Т.к. f(x)=O(g(x)), x®b-0 тоÞ существует левая окрестность (.) В для любого х. Т.к. aòbg(x)dx –сход Þ aòbf(x)dx – сх Þ по Т1Þ"h,(h0,b) h0òhg(x)dx£M(M=const) Þ " xÎ(h0,b) h0òhf(x)dx£C h0òhg(x)dx£CM Þ все интегралы h0òhf(x)dx ограничены в совокупности, по этому в теореме 1 h0òbf(x)dx-схÞaòbf(x)dx –сх; Аналогично если aòbf(x)dx-расход Þaòbg(x)dx- расх {Предельный признак сравнения} Пусть для не отрицательных ф-ций на [a,b) f(x),g(X)³0 существует возможно бесконечный предел $ limx®b-0f(x)/g(x)=k, тогда 1) при 0£k<+¥ из сходимости aòbg(x)dx Þ сх-тьaòbf(x)dx; 2) при 0<k£+¥ из расходимости aòbg(x)dx Þ расх-тьaòbf(x)dx; В часности при 0£k<+¥ aòbg(x)dx и aòbf(x)dx сход или расход одновр.{Док-во} 1. 0£k<+¥ По определению предела для E=1 $(h0,b) | " xÎ(h0,b) |f(x)/g(x)-k|<E=1 Þ k-1<f(x)/g(x)<k+1 Þ т.к. g(x)³0 Þ f(x)<(k+1)×g(x) Þf(x)=o(g(x)), x®b-0 Þ по Т2 Þесли aòbg(x)dx –сх, то aòbf(x)dx-сх. 2) Пусть 0<k£+¥ тогда по опред предела для E={1 при k=+¥ {k/2 при k<+¥ Þ $ (h0,b) | " xÎ(h0,b) f(x)/g(x)>1 при k=+¥ |f(x)/g(x)-k|<k/2 при k<+¥ Þ при к=+¥ g(x)<f(x); при k<+¥ f(x)/g(x)>k/2 Þ g(x)<2f(x)/k; g(x)=O(f(x)), x®b-0 Þ по Т2 Þ если aòbg(x)dx –расход Þaòbf(x)dx –расх.

 





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...