Главная Обратная связь

Дисциплины:






Замена переменной в интеграле



НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

 

Первообразная, основное свойство первообразных

 

Определение.Первообразной функции называется функция , производная которой равна , т.е. .

Поскольку , где постоянная, первообразных функции бесчисленное множество.

Теорема. Любые две первообразные функции могут отличаться только на постоянную. Другими словами, если и , то

Доказательство: Обозначим Согласно предположению Следовательно, имеем:

.

 

Определение. Множество всех первообразных одной функции называется неопределенным интегралом этой функции и обозначается , причем называется подынтегральной функцией, подынтегральным выражением.

Очевидно, что если , то , где произвольная постоянная интегрирования, то есть постоянная может принимать любые значения.

Приведем таблицу неопределенных интегралов с проверкой того, что действительно производная от правой части совпадает с подынтегральной функцией.

Таблица неопределенных интегралов

1. .
2.
3. .
4. .
5. . .
6.
7.
8. .
9.
10. .
11.
12.
13.
14.
15.
16.
17. .
18.

Приемы интегрирования

 

Тождественные преобразования подынтегрального выражения и использование свойств интегралов

(непосредственное интегрирование).

 

Из свойства производной

следует аналогичное свойство для неопределенных интегралов

.

 

Пример 1.

Пример 2.

 

Замена переменной в интеграле

 

Докажем, что если , то .

Доказательство: Имеем: . Тогда

.

Формула интегрирования заменой переменной:

После нахождения интеграла правой части этого равенства следует перейти от новой переменной интегрирования назад к старой переменной .

При подходящей замене переменной мы сводим заданный интеграл к табличному.

 

Пример 1.

Пример 2.

.

 

Пример 3.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...