Происхождение нефти
Реферат
«Нефть и способы её переработки»
Выполнил: Глебов Александр, ученик 10 «А» класса
Проверила: Переходцева Людмила Александровна
Новосибирск
Оглавление
Оглавление……………………………………………………………………………………….2
Происхождение нефти……………………………………………………………………..3
Разведка нефти…………………………………………………………………………………10
Добыча нефти……………………………………………………………………………………11
Очистка нефти……………………………………………………………………………………13
Перегонка нефти……………………………………………………………………………….14
Крекинг нефтепродуктов…………………………………………………………………..17
Термический крекинг………………………………………………………………………..19
Каталитический крекинг……………………………………………………………………19
Риформинг…………………………………………………………………………………………20
Продукты, получаемые из нефти, их применение………………………….20
Приложение………………………………………………………………………………………22
Список дополнительной литературы………………………………………………..22
Нефть и способы ее переработки
Происхождение нефти
Истоки современных представлений о происхождении нефти возникли в XVIII – начале XIX века. М. В. Ломоносов заложил гипотезы органического происхождения нефти, объясняя ее образование воздействием “подземного огня” на “окаменелые уголья”, в результате чего, по его мнению, образовывались асфальты, нефти и “каменные масла”. Идея о минеральном происхождении нефти впервые была высказана А. Гумбольдтом в 1805 году.
Историческая справка. Михаил Васильевич Ломоносов (1711-1765). Первый русский ученый – естествоиспытатель мирового значения, человек энциклопедических знаний, разносторонних интересов и способностей, один из основоположников физической химии, поэт, заложивший основы современного литературного языка, художник, историк, поборник отечественного просвещения и развития самостоятельной русской науки. Развитие химии, эксперименты по неорганическому синтезу углеводородов, проведенные М. Бертло (1866 год), Г. Биассоном (1871), послужили отправной точкой для развития гипотезы минерального происхождения.
Д. И. Менделеев , придерживавшийся до 1867 года представлений об органическом происхождении нефти, в 1877 году сформулировал известную гипотезу ее минерального происхождения, согласно которой нефть образуется на больших глубинах при высокой температуре вследствие взаимодействия воды с карбидами металлов. За прошедшее столетие накопилось огромное количество химических, геохимических и геологических данных, проливающих свет на проблему происхождения нефти. В настоящее время преобладающая часть ученых — химиков, геохимиков и геологов — считает наиболее обоснованными представления об органическом генезисе нефти, хотя имеются ученные, которые до сих пор отдают предпочтение минеральной гипотезе ее образования.Все гипотезы минерального происхождения нефти объединяет идея синтеза углеводородов, кислородо-, серо- и азотосодержащих компонентов нефти из простых исходных веществ — C, H 2 , CO, CO 2 , CH 4 , H 2 O и радикалов при высоких температурах и взаимодействии продуктов синтеза с минеральной частью глубинных пород.
Д. И. Менделеев считал, что основой процесса образования углеводородов является взаимодействие карбидов глубинных металлов с водой, которая проникает по трещинам с поверхности на большую глубину. Схема процесса представлялась следующим образом:
2FeC + 3H 2 O = Fe 2 O 3 + C 2 H 6
или в общем виде:
MC m + mH 2 O → MO m + (CH 2 ) m
Образовавшиеся в газообразном состоянии углеводороды, по мнению
Д. И. Менделеева , поднимались затем в верхнюю холодную часть земной коры, где они конденсировались и накапливались в пористых осадочных породах. Карбиды металлов в то время в глубинных породах еще не были известны. В настоящее время предположение Д. И. Менделеева подтвердилось, в глубинных породах найдены карбиды ряда элементов (Fe 3 C, TiC, Cr 2 C 3 , WC, SiC). Но крупных скоплений они не образуют; это мельчайшие (доли миллиметра) редко встречающиеся и рассеянные в породах минеральные выделения. Поэтому процесс образования углеводородов в огромных количествах, которые известны в природе, с этих позиций объяснить очень трудно. Не вызывает сомнений сейчас также, что вода с поверхности по трещинам на большие глубины поступать не может. Но это и не существенно, флюидная фаза глубинных пород в определенных условиях содержит воду, поэтому в принципе ее взаимодействие с карбидами возможно. Вполне вероятно и образование простейших углеродах, однако вряд ли это возможно в больших количествах.
В 1892 году М. А. Соколовым была выдвинута гипотеза космического происхождения нефти. Суть ее сводится к тому же минеральному синтезу углеводородов из простых веществ, но на первоначальной, космической стадии формирования Земли. Предполагалось, что образовавшиеся углеводороды находились в газовой оболочке, а по мере остывания поглощались породами формировавшейся земной коры. Высвобождаясь затем из остывавших магматических пород, углеводороды поднимались в верхнюю часть земной коры, где образовывали скопления. В основе этой гипотезы были данные о наличии углерода и водорода в хвостах комет и углеводородов в метеоритах.
В первой половине XX века интерес к гипотезе минерального происхождения нефти в основном был потерян. Поиски нефти велись во всем мире, исходя из представлений о ее органическом происхождении.
С 1950 года снова начал возрастать интерес к минеральной гипотезе, причиной чего была, по-видимому, недостаточная ясность в ряде вопросов органической концепции, что и вызвало ее критику. Наибольшую известность получили представления Н. А. Кудрявцева . Они заметно изменялись во времени, но сущность их заключаются в том, что нефть и газ образуются в глубинных зонах Земли из смеси H 2 COCO 2 и CH 4 в результате реакций прямого синтеза углеводорода из CO и Н 2 :
CO + 3H 2 = CH 4 + H 2 ,
а также полимеризация радикалов =CH, -CH 2 , CH 3 . Предполагалось, что образование углеводородов происходит из реакционной смеси в раздробленных глубинными разломами участках литосферы. Прорыв находящихся под высоким давлением углеводородов вверх, в осадочную толщу, приводит к образованию залежей нефти и газа.
В поисках доказательств абиогенного синтеза нефти некоторые исследователи обращались к промышленным процессам получения синтетических топлив (типа синтеза Фишера - Тропша). Однако по мере углубления знаний о строении нефти отчетливо выявились глубокие различия в составе природных и синтетических углеводородных смесей. Последние практически не содержат широко представленных в нефти сложно построенных углеводородных молекул, насыщенных структурных аналогов компонентов живого вещества — жирных кислот, терпинов, стиролов и т. д.Ряд аргументов сторонников минерального происхождения нефти основан на термодинамических расчетах. Е. Б. Чикалюк попытался определить температуру нефтеобразования по соотношению между некоторыми изомерными углеводородами, допуская, что высокотемпературный синтез приводит к образованию термодинамически равновесных смесей. Рассчитанная таким образом температура нефтеобразования составила 450-900єC, что соответствует температуре глубинной зоне 100-160 км в пределах верхней мантии Земли.Однако для той же нефти расчет по другим изомерным парам дает другие значения температуры, совершенно нереальные в условиях земной коры и мантии. В настоящее время доказано, что изомерные углеводороды нефти являются неравновесными системами. С другой стороны, расчеты термодинамических свойств углеводородов в области очень высоких давлений весьма условны из-за необходимости прибегать к сверхдальним экстраполяциям. В принципе в глубинных условиях Земли при наличии С и Н 2 синтез СН 4 , его гомологов, а, может быть, и некоторых более высокомолекулярных соединений вполне возможно и происходит. Но пока нет достаточных ни теоретических, ни экспериментальных данных, которые могли бы однозначно доказать возможности минерального синтеза такой сложной и закономерной по составу системы углеводородов, азото-, серо- и кислородосодержащих соединений какой является природная нефть, которая обладает оптической активностью и весьма сходна по многим признакам на молекулярном и изотопном уровнях с живым веществом организмов и биоорганическим веществом осадочных пород.Геологические доказательства минеральной гипотезы — наличие следов метана и некоторых нефтяных углеводородов в глубинных кристаллических породах, в газах и магмах, извергающихся из вулканов, проявления нефти и газа по некоторым глубинным разломам и т. п. — являются косвенными и всегда допускают двойную трактовку.Внедряющиеся в земную кору глубинные породы расплавляют и ассимилируют осадочные породы с имеющимся в них биогенным органическим веществом, жерла вулканов также проходят через осадочные толщи, причем иногда регионально нефте-газоносные, поэтому находимые в них СН 4 и некоторые другие нефтяные углеводороды могли образоваться не только в результате минерального синтеза, но и при термической деструкции захваченного биогенного органического вещества осадочных пород или при поступлении нефти в осадочные породы уже после остывания магматических пород. Но главное доказательство состоит в большом сходстве химических и геохимических показателей многих углеводородных и неуглеводородных соединений нефти с аналогичными компонентами живого вещества организмов и биогенного органического вещества современных осадков и древних осадочных пород.Гениальная догадка М. В. Ломоносова об образовании нефти в результате воздействия повышенной температуры на биогенное органическое вещество осадочных пород начала получать подтверждение в конце XIX— начале XX веков при проведении экспериментальных химических и геологических исследований.Энглер (1888 г.) при перегонке сельдевого жира получил коричневого цвета масла, горючие газы и воду. В легкой фракции масел содержались углеводороды от С 5 до С 9 , во фракции больше 300єС парафины, нафтены, олефины и ароматические углеводороды. Возникла гипотеза образования нефти из жиров животного происхождения.
Получение оптически активных нефтеподобных продуктов при перегонке органического вещества планктонных водорослей послужило основой для гипотезы происхождения нефти из растительного материала. Этому способствовали и геологические исследования. При поисках и разведке нефтяных месторождений геологи уже в XIX веке стали отмечать частую приуроченность нефтяных залежей к древним морским отложениям, обогащенным сапропелевым органическим веществом, которые были названы нефте-материнскими. Начиная с работ А. Д. Архангельского (1927 г.) и П. Д. Траска (1926 — 1932 гг.) развернулись исследования органического вещества современных осадков и древних осадочных пород. Значительное влияние на направление исследований оказал И. М. Губкин …
…Особое значение имело открытие в нефти, унаследованных от животного вещества биомолекул (“химических ископаемых”, по аналогии с палеонтологическими). Важными “биогенными метками” являются свойственные живому веществу многие изопреноидные углеводороды, возникновение которых связывают с фитолом — периферическим структурным элементом молекулы хлорофилла. Благодаря большому сходству в молекулярной структуре между стероидами и стеранами, тритерпеноидами и тритерпанами живого вещества и нефти, их присутствие является надежным показателем органического генезиса нефти. По стереохимическим особенностям нефтяные стераны и тритерпаны все-таки несколько отличаются от исходных биологических соединений, что связано с изменениями при термическом превращении пространственного строения одного или нескольких хиральных центров биомолекул. Пентоциклические тритерпены встречаются в основном в наземных растениях. В органическом веществе морских осадочных пород и в нефти распространены тетрациклические углеводороды - стераны, свойственные сине-зеленым планктонным водорослям, которые явились одним их основных биопродуцентов при накоплении сапропелевого органического вещества в морских осадков в течение всего геологического времени. К унаследованным биогенным структурам относятся и нормальные алканы. Содержание их в нефти достигает 10-15, а иногда и 30% . свидетельством образования н-алканов из биогенных жирных кислот являются случаи преобладания в малопреобразованных нефти н-алканов с нечетным числом атомов углеводородов над “четными”. Для живого вещества и образованного из него органического вещества осадков всегда характерно преобладание жирных кислот с четным числом атомов углерода. Постепенное сглаживание этих первичных генетических признаков до примерно одинаковой концентрации “четных” и “нечетных” н-алканов и в органическом веществе нефти материнских пород и нефтезалежей происходит по мере нарастания глубины и температуры в недрах вследствие вторичных реакций. Таким образом, по многим признакам на молекулярном уровне и наличию “биомаркеров” прослеживается связь между живым веществом организмов, органическим веществом осадочных нефте-материнских пород и нефти в залежах. Суммарное количество унаследованных от живого вещества биогенных молекулярных структур иногда достигает в нефти 30% от их массы. Детальное изучение состава и распределения “биомаркеров” в органическом веществе осадочных пород и в нефти позволяет не только утверждать органическое происхождение нефти, но даже определять для конкретных залежей, из каких именно отложений в них поступали нефтяные углеводороды при формировании месторождений.
Известно, что нефть распределена в осадочных толщах неравномерно, и это также понятно с позиций органической концепции ее образования. Исходная для нефти органическое вещество накапливалось в осадках в течение геологического времени неравномерно. Максимумам его накопления в девонских, юрско-меловых и третичных отложениях соответствуют максимальные массы образовавшихся рассеянных нефтяных углеводородов в нефте-материнских отложениях этого возраста и максимумы запасов нефти в открытых месторождениях. Таким образом, все химические, геохимические и геологические данные с несомненностью свидетельствуют об органическом происхождении нефти. Известно, что при нагревании сапропелевых сланцев до 150-170є С начинается слабое термическое разложение термического вещества, приводящее к повышению выхода экстрактивных веществ; при 200є С их образуется заметно больше, а при 370-400є С после нагревания в течение 1 часа уже до 60-80% органического вещества сланцы переходят в растворимое состояние. Образуется много асфальтово-смолистых веществ, содержащих все основные классы нефтяных углеводородов, а также газы (СO 2 , CH 4 , H 2 S) и пирогенетическая вода. В принципе тот же самый процесс термического (или термокаталитического) разложения происходит и в природных условиях при погружении содержащих сапропелевое органическое вещество отложений под накапливающиеся над ними более молодыми осадками. Только в природных условиях он протекает крайне медленно, со скоростью погружения осадков обычно от 50-100 до 300 м/млн. лет. Опускание на глубину 2-3 км, характеризующуюся большей части залежей образовавшийся нефти и температурой до 150-160єС осуществляется за время от 10 до 60 млн. лет. Такой очень медленный природный “технологический” процесс термического превращения органического вещества с подъемом температуры на один градус Цельсия за 60-400 тыс. лет трудно себе представить, однако проведенные исследования подтверждают, что в природных условиях он действительно реализуется очень широко во многих впадинах, заполненных мощными толщами накопленных осадков. Детальные геолого-геохимические исследования позволили ученым проследить последовательные стадии этого процесса.
Балансовые расчеты термического превращения сапропелевого органического вещества и процессов эмиграции нефтяных углеводородов по полученным экспериментальным данным позволили создать теоретическую количественную модель образования нефти. Главная фаза нефтеобразования характеризуется максимальной скоростью генерации нефтяных углеводородов, обычно в глубинном диапазоне 2-3 км при температуре от 80-90 до 150-160єС. При низком геотермическом градиенте, медленном нарастании температуры с глубиной главной фазы нефтеобразования реализуется в более глубокой зоне, примерно до 6-8 км. Общее количество образующихся битуминозных веществ и нефтяных углеводородов превышает 30%, а количество эмигрировавшей в пористые пласты коллекторы нефти достигает 20% от исходной массы сапропелевого органического вещества. Всплывание нефти, вынесенной из глинистых нефте-материнских пород в водонасыщенные пористые пласты, приводит постепенно к образованию ее скоплений (залежей) в наиболее приподнятых участках пластов (на антиклинальных структурах). Процесс нефтеобразования и формирования ее залежей на этом заканчивается.
Разведка нефти
Цель нефтеразведки – выявление, геолого-экономическая оценка и подготовка к разработке залежей нефти. Нефтеразведка производится с помощью геологических, геофизических, геохимических и буровых работ в рациональном сочетании и последовательности.
На первой стадии поискового этапа в бассейнах с не установленной нефтегазоносностью либо для изучения слабо исследованных тектонических зон или нижних структурных этажей в бассейнах с установленной нефтегазоносностью проводятся региональные работы. Для этого осуществляются аэромагнитная, геологическая и гравиметрическая съемки, геохимические исследования вод и пород, профильное пересечение территории электро- и сейсморазведкой, бурение опорных и параметрических скважин. В результате устанавливаются районы для дальнейших поисковых работ.
На второй стадии производится более детальное изучение нефтегазоносных зон путем детальной гравиразведки, структурно-геологической съемки, электро- и сейсморазведки, структурного бурения.
Производится сравнение снимков масштабов 1:100.000 – 1:25.000. уточняется оценка прогнозов нефтегазоносности, а для структур с доказанной нефтегазоносностью, подсчитываются перспективные запасы.
На третьей стадии производится бурение поисковых скважин с целью открытий месторождений. Первые поисковые скважины бурятся на максимальную глубину. Обычно первым разведуется верхний этаж, а затем более глубокие. В результате дается предварительная оценка запасов.
Разведывательный этап – завершающий в геологоразведочном процессе. Основная цель – подготовка к разработке. В процессе разведки должны быть оконтурены залежи, определены литологический состав, мощность, нефтегазонасыщенность. По завершению разведочных работ подсчитываются запасы и даются рекомендации о вводе месторождения в разработку. Эффективность поиска зависит от коэффициента открытий месторождений – отношением числа продуктивных площадей к общему числу разбуренных поисковым бурением площадей.
Добыча нефти
Почти вся добываемая в мире нефть, извлекается посредством буровых скважин, закрепленных стальными трубами высокого давления. Для подъема нефти и сопутствующих ей газа и воды на поверхность скважина имеет герметичную систему подъемных труб, механизмов и арматуры, рассчитанную на работу с давлениями, соизмеримыми с пластовыми. Добыче нефти при помощи буровых скважин предшествовали примитивные способы: сбор ее на поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, посредством колодцев. Сбор нефти с поверхности водоемов – это, очевидно, первый по времени появления способ добычи, который до нашей эры применялся в Мидии, Вавилонии и Сирии. Сбор нефти в России, с поверхности реки Ухты начат Ф.С. Прядуновым в 1745 г. В 1858 на полуострове Челекен нефть собирали в канавах, по которым вода стекала из озера. В канаве делали запруду из досок с проходом воды в нижней части: нефть накапливалась на поверхности. Разработка песчаника или известняка, пропитанного нефтью , и извлечение из него нефти, впервые описаны итальянским ученым Ф. Ариосто в 15 веке. Недалеко от Модены в Италии такие нефтесодержащие грунты измельчались и подогревались в котлах. Затем нефть выжимали в мешках при помощи пресса. В 1833 –1845 г.г. нефть добывали из песка на берегу Азовского моря. Песок помещали в ямы с покатым дном и поливали водой. Вымытую из песка нефть собирали с поверхности воды пучками травы. Добыча нефти из колодцев производилась в Киссии, древней области между Ассирией и Мидией в 5 веке до нашей эры при помощи коромысла, к которому привязывалось кожаное ведро. Подробное описание колодезной добычи нефти в Баку дал немецкий натуралист Э. Кемпфер . Глубина колодцев достигала 27 м, их стенки обкладывались камнем или укреплялись деревом. Добыча нефти посредством скважин начала широко применяться с 60-х г. 19 века. Вначале наряду с открытыми фонтанами и сбором нефти в вырытые рядом со скважинами земляные амбары добыча нефти осуществлялась также с помощью цилиндрических ведер с клапаном в днище. Из механизированных способов эксплуатации впервые в 1865 в США была внедрена глубоконасосная эксплуатация , которую в 1874 г применили на нефтепромыслах в Грузии, в 1876 в Баку. В 1886 г В.Г. Шухов предложил компрессорную добычу нефти , которая была испытана в Баку в 1897г. Более совершенный способ подъема нефти из скважины – газлифт – предложил в 1914 г М.М. Тихвинский . Процесс добычи нефти, начиная от притока ее по пласту к забоям скважин и до внешней перекачки товарной нефти с промысла, можно разделить условно на 3 этапа.
- Движение нефти по пласту к скважинам благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин.
- Движение нефти от забоев скважин до их устьев на поверхности – эксплуатация нефтяных скважин.
- Сбор нефти и сопровождающих ее газа и воды на поверхности, их разделение, удаление минеральных солей из нефти, обработка пластовой воды, сбор попутного нефтяного газа.
Под разработкой нефтяного месторождения понимается осуществление процесса перемещения жидкостей и газа в пластах к эксплуатационным скважинам. Управление процессом движения жидкостей и газа достигается размещением на месторождении нефтяных, нагнетательных и контрольных скважин, количеством и порядком ввода их в эксплуатацию, режимом работы скважин и балансом пластовой энергии. Принятая для конкретной залежи система разработки предопределяет технико-экономические показатели. Перед забуриванием залежи проводят проектирование системы разработки. На основании данных разведки и пробной эксплуатации устанавливают условия, при которых будет протекать эксплуатация: ее геологическое строение, коллекторские свойства пород (пористость, проницаемость, степень неоднородности), физические свойства жидкостей в пласте (вязкость, плотность), насыщенность пород нефти водой и газом, пластовые давления. Базируясь на этих данных, производят экономическую оценку системы, и выбирают оптимальную. При глубоком залегании пластов для повышения нефтеотдачи в ряде случаев успешно применяется нагнетание в пласт газа с высоким давлением. Извлечение нефти из скважин производится либо за счет естественного фонтанирования под действием пластовой энергии, либо путем использования одного из нескольких механизированных способов подъема жидкости. Обычно в начальной стадии разработки действует фонтанная добыча, а по мере ослабления фонтанирования скважину переводят на механизированный способ: газлифтный или эрлифтный, глубинонасосный (с помощью штанговых, гидропоршневых и винтовых насосов).
Газлифтный способ вносит существенные дополнения в обычную технологическую схему промысла, так как при нем необходима газлифтная компрессорная станция с газораспределителем и газосборными трубопроводами.
Нефтяным промыслом называется технологический комплекс, состоящий из скважин, трубопроводов, и установок различного назначения, с помощью которых на месторождении осуществляют извлечение нефти из недр Земли. На месторождениях, разрабатываемых с помощью искусственного заводнения, сооружают систему водоснабжения с насосными станциями. Воду берут из естественных водоемов с помощью водозаборных сооружений. В процессе добычи нефти важное место занимает внутрипромысловый транспорт продукции скважин, осуществляемый по трубопроводам. Применяются 2 системы внутрипромыслового транспорта: напорные и самотечные. При напорных системах достаточно собственного давления на устье скважин. При самотечных движение происходит за счет превышения отметки устья скважины над пометкой группового сборного пункта. При разработке нефтяных месторождений, приуроченных к континентальным шельфам, создаются морские нефтепромыслы.
Очистка нефти
Первый завод по очистке нефти был построен в России в 1745 г., в период правления Елизаветы Петровны, на Ухтинском нефтяном промысле. В Петербурге и в Москве тогда пользовались свечами, а в малых городах – лучинами. Но уже тогда во многих церквях горели неугасаемые лампады. В них наливалось гарное масло, которое было не чем иным, как смесью очищенной нефти с растительным маслом. Купец Набатов был единственным поставщиком очищенной нефти для соборов и монастырей.
В конце XVIII столетия была изобретена лампа. С появлением ламп возрос спрос на керосин.
Очистка нефти – удаление из нефтепродуктов нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел.
Химическая очистка производится путем воздействия различных реагентов на удаляемые компоненты очищаемых продуктов. Наиболее простым способом является очистка 92-92% серной кислотой и олеумом, применяемая для удаления непредельных и ароматических углеводородов.
Физико-химическая очистка производится с помощью растворителей, избирательно удаляющих нежелательные компоненты из очищаемого продукта. Неполярные растворители (пропан и бутан) используются для удаления из остатков переработки нефти (гудронов), ароматических углеводородов (процесс деасфальтации). Полярные растворители (фенол и др.) применяются для удаления полициклических ароматических углеродов с короткими боковыми цепями, сернистых и азотистых соединений из масляных дистиллятов.
При адсорбционной очистке из нефтепродуктов удаляются непредельные углеводороды, смолы, кислоты и др. адсорбционную очистку осуществляют при контактировании нагретого воздуха с адсорбентами или фильтрацией продукта через зерна адсорбента.
Каталитическая очистка – гидрогенизация в мягких условиях, применяемая для удаления сернистых и азотистых соединений.
Перегонка нефти
Братья Дубинины впервые создали устройство для перегонки нефти. С 1823 г. Дубинины стали вывозить фотоген (керосин) многими тысячами пудов из Моздока внутрь России. Завод Дубининых был очень прост: котел в печке, из котла идет труба через бочку с водой в пустую бочку. Бочка с водой – холодильник, пустая – приемник для керосина.
В Америке впервые опыты по перегонке нефти осуществил в 1833 г. Силлиман.
На современном заводе вместо котла устраивается ложная трубчатая печь. Вместо трубки для конденсации и разделения паров сооружаются огромные ректификационные колонны. А для приёма продуктов перегонки выстраиваются целые городки резервуаров.
Нефть состоит из смеси различных веществ (главным образом углеводородов) и потому не имеет определённой точки кипения. На трубчатках нефть подогревают до 300-325 о . При такой температуре более летучие вещества нефти превращаются в пар.
Печи на нефтеперегонных заводах особые. С виду они похожи на дома без окон. Выкладываются печи из лучшего огнеупорного кирпича.
Внутри, вдоль и поперёк, тянутся трубы. Длина труб в печах достигает километра.
Когда завод работает, по этим трубам с большой скоростью – до двух метров в секунду – движется нефть. В это время из мощной форсунки в печь устремляется пламя. Длина языков пламени достигает нескольких метров.
При температуре 300-325 о нефть перегоняется не полностью. Если температуру перегонки увеличить, углеводороды начинают разлагаться.
Нефтяники нашли способ перегонки нефти без разложения углеводородов.
Вода кипит при 100 о тогда, когда давление равно атмосфере, или 760 мм. рт. ст. Но она может кипеть, например, и при 60 о . Для этого надо лишь понизить давление. При давлении в 150 мм термометр покажет всего 60 о .
Чем меньше давление, тем скорее закипает вода. То же самое происходит с нефтью. Многие углеводороды в условиях атмосферного давления кипят только при 500 о . Следовательно, при 325 о эти углеводороды не кипят.
А если снизить давление, то они закипят и при более низкой температуре.
На этом законе основана перегонка в вакууме, т. е. при пониженном давлении. На современных заводах нефть перегоняется или под атмосферным давлением, или под вакуумом, чаще всего заводы состоят из двух частей – атмосферной и вакуумной. Такие заводы так и называются атмосферно-вакуумные. На этих заводах получаются одновременно все продукты: бензин, лигроин, керосин, газойль, смазочные масла и нефтяной битум. Неиспарившихся частей при такой перегонки остаётся гораздо меньше, чем при атмосферной.
Дружнее происходит испарение нефти, когда в установку вводится пар.
Сложна и интересна работа ректификационной колонны. В этой колонне происходит не только разделение веществ по их температурам кипения, но одновременно производится дополнительное многократное кипячение конденсирующейся жидкости.
Колонны делаются очень высокими – до 40 м. Внутри они разделяются горизонтальными перегородками – тарелками – с отверстиями. Над отверстиями устанавливаются колпачки.
Смесь углеводородных паров из печи поступает в нижнюю часть колонны.
Навстречу неиспарившемуся остатку нефти снизу колонны подаётся перегретый пар. Этот пар прогревает неиспарившийся остаток и увлекает с собой все лёгкие углеводороды вверх колонны. В нижнюю часть колонны стекает освобождённый от лёгких углеводородов тяжёлый остаток – мазут, а пары одолевают тарелку за тарелкой, стремясь к верху колонны.
Сначала превращаются в жидкость пары с высокими температурами кипения. Это будет соляровая фракция, которая кипит при температуре выше 300 о . Жидкий соляр заливает тарелку до отверстий. Парам, идущим из печи, теперь приходится пробулькивать через слой соляра.
Температура паров выше температуры соляра, и соляр снова кипит.
Углеводороды, кипящие при температуре ниже 300 о , отрываются от него и летят вверх колонны, на секцию керосиновых тарелок.
В соляре, выходящем из колонны, поэтому нет бензина или керосина.
В колоннах бывает 30-40 тарелок, разделённых на секции. Через все тарелки проходят пары, на каждой они пробулькивают через слой сконденсировавшихся паров и в промежутках между ними встречают падающие с верхней тарелки капли лишнего, не убравшегося на верхнюю тарелку конденсата.
Принципиальная технологическая схема установки для атмосферно-вакуумной перегонки нефти. Аппараты 1, 3 – атмосферные ректификационные колонны; 2 - печи для нагрева нефти и мазута; 4 - вакуумная ректификационная колонна; 5 – конденсаторы – холодильники; 6 – теплообменники.
Линии: I – нефть; II – легкий бензин; III – отбензиненая нефть; IV – тяжелый бензин; V – керосин и газойль; VI – водяной пар; VII – мазут; VIII – газы разложения; IX – масляные фракции; Х – гудрон.
В колонне непрерывно идёт сложная, кропотливая работа. Углеводороды собираются в секциях по температурам кипения. Для каждой группы углеводородов в колонне имеются свои секции и свой выход.
Углеводороды сгруппируются в своей секции только тогда, когда в них не будет углеводородов других температур кипения.
Когда они соберутся вместе, они из колонны выходят в холодильник, а из холодильника – в приёмник.
Из самых верхних секций колонны идёт не бензин, а пары бензина, так как температура вверху колонны выше температуры легко кипящих частей бензина. Пары бензина идут сначала в конденсатор.
Здесь они превращаются в бензин, который направляется также в холодильник, а затем в приёмник.
|