Главная Обратная связь

Дисциплины:






Свойства степенной функции с положительным рациональным показателем меньшим единицы



· Область определения: .

· Область значений: .

· Функция нечетная, так как .

· Функция возрастает при .

· Функция вогнутая при и выпуклая при .

· Точка (0;0) является точкой перегиба.

· Асимптот нет.

· Функция проходит через точки (-1;-1), (0;0), (1;1).

К началу страницы

Сейчас остановимся на степенной функции , у которой и числитель рациональной дроби в показателе степени представляет собой четное число, а знаменатель - нечетное число и сама дробь несократима (например, 2/3 или 6/7).

Графики степенной функции при а = 2/5 и а = 6/7 имеют вид ( – синяя линия, – красная линия):

Свойства степенной функции для этого случая.

· Область определения: .

· Область значений: .

· Функция четная, так как .

· Функция возрастает при , убывает при .

· Функция выпуклая при .

· Точек перегиба нет.

· Асимптот нет.

· Функция проходит через точки (-1;1), (0;0), (1;1).

К началу страницы

Рассмотрим степенную функцию , когда и а – несократимая рациональная дробь с четным знаменателем (например, а = 7/4 или 11/8).

В качестве примера на рисунке изображены графики степенных функций – черная линия, – красная линия, – синяя линия.

Свойства степенной функции с положительным рациональным показателем большим единицы.

· Область определения: .

· Область значений: .

· Функция не является ни четной, ни нечетной, то есть она общего вида.

· Функция возрастает при .

· Функция вогнутая при , если ; при , если .

· Точек перегиба нет.

· Асимптот нет.

· Функция проходит через точки (0;0), (1;1).

Замечание.

Если и а – иррациональное число (например, корень четвертой степени из 19,23), то вид графика степенной функции с иррациональным показателем аналогичен виду графиков, показанных в этом пункте, свойства абсолютно схожи.

К началу страницы

Перейдем к степенной функции, когда , а числитель и знаменатель рациональной дроби в показателе степени представляет собой нечетные числа, причем сама дробь несократима (например, 7/3 или 25/7).

В качестве примера приведены графики степенных функций – синяя линия, – красная линия.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...