Главная Обратная связь

Дисциплины:






Свойства степенной функции с отрицательным рациональным показателем



· Область определения: .
Поведение на границе области определения при и а – несократимая рациональная дробь с нечетным числителем и знаменателем.
Следовательно, х = 0 является вертикальной асимптотой.

· Область значений: .

· Функция нечетная, так как .

· Функция убывает при .

· Функция выпуклая при и вогнутая при .

· Точек перегиба нет.

· Горизонтальной асимптотой является прямая y = 0.

· Функция проходит через точки (-1;-1), (1;1).

К началу страницы

Сейчас поговорим о степенной функции , если и если числитель рациональной дроби в показателе степени представляет собой четное число, а знаменатель - нечетное число, а сама дробь несократима (например, -2/3 или -6/7).

На рисунке показаны графики степенных функций – синяя линия, – красная линия.

Свойства степенной функции с отрицательным рациональным показателем.

· Область определения: .
Поведение на границе области определения при и а – несократимая рациональная дробь с четным числителем и нечетным знаменателем.
Следовательно, х = 0 является вертикальной асимптотой.

· Область значений: .

· Функция четная, так как .

· Функция возрастает при , убывает при .

· Функция вогнутая при .

· Точек перегиба нет.

· Горизонтальной асимптотой является прямая y = 0.

· Функция проходит через точки (-1;1), (1;1).

К началу страницы

Переходим к степенной функции для случая, когда и а – несократимая рациональная дробь с четным знаменателем (например, а = -3/2 или -21/8).

Для примера покажем графики степенных функций – красная линия, – синяя линия и – черная линия.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...