Главная Обратная связь

Дисциплины:






Показатели использования фонда скважин



Коэффициент эксплуатации действующего фонда скважин – показатель, характеризующий уровень использования действующих скважин во времени, определяется как отношение времени эксплуатации к календарному времени работы действующего фонда.Кэкспл.экспл.кал.ДФ

Под коэффициентом использования фонда скважин понимается отношение скважин, составляющих действующий фонд, к общему числу эксплуатационных скважин, числящемуся на объекте:

где Nдейст. – количество действующих скважин на конец года;

Nбезд. – количество бездействующих скважин на объекте на конец года; Nосв. – количество скважин, находящихся в освоении после бурения.

Обводненность продукции – отношение объема добываемой воды к общему объему добытой жидкости. Различают массовую (весовую) и объемную обводненность продукции. Массовая (весовая) обводненность определяет долю воды в общем количестве добытой жидкости в тоннах, весовая – в кубических метрах. Обводненность определяется по формуле:

где fв, fн – соответственно доля воды (обводненность) и нефти в потоке жидкости; Qн, Qв – добыча нефти и воды (т или м3);

МРП (межремонтный период) – средняя продолжительность работы скважины в сутках между двумя последовательными ремонтами.

Расчет МРП производится ежемесячно за скользящий год по эксплуатационному фонду скважин, как по способам эксплуатации, так и по всему фонду. Расчет МРП производится по формуле:

 

Т – календарное число суток за расчетный скользящий год (365 или 366 ) ;

Ф – среднеарифметический фонд эксплуатационных скважин на начало и конец расчетного скользящего года ;

kэкспл– коэффициент эксплуатации за расчетный скользящий год ;

N – число ремонтов скважин с использованием подъемного агрегата, для добывающих скважин показатель N включает в себя текущие ремонты скважин, связанные с ревизией или заменой подземного оборудования (насос, НКТ и др.; для нагнетательных скважин показатель N включает в себя текущие ремонты, связанные с подземным оборудованием, и капитальные ремонты, выполняемые в стволе скважины.

Виды несовершенства скважин и его учет

Гидродинамическое несовершенство скважины проявляется в том, что в призабойной зоне пласта с конечной мощностью отсутствует радиальность потока по причине, обусловленной конструкцией забоя или фильтра.

Различают два вида несовершенства скважин - несовершенство по степени вскрытия и несовершенство по характеру вскрытия.

 

Несовершенная скважина по степени вскрытия - это скважина с открытым забоем, вскрывшая пласт не на всю мощность, а частично

Технология исследования нагнетательных скважин

Для нагнетательнхскв справедливы те же ур-я, что и для добывающих. Необходимо иметь ввиду, что под величиной дебита сквq подразумевается qпр, т.е. отрицательный дебит (-q). Изменение давления на забое остановленной скв ΔР(t) представляет собой падение давления: ΔР(t)=Pc(t)-Pc=((-q)m)/4πkh)*ln(2.25c/r2спр)=(2.3(-q)m)/4πkh)*lg(2.25c/r2спр).



Особенностью нагнетательной сквяв-ся то, что ствол её заполнен водой - однородной и практически несжимаемой ж-тью. Забойное давление в нагнетательной скв складывается из гидростатического давления столба ж-ти и буферного давления (потерей напора по стволу работающей скв можно пренебречь). Поэтому изменение забойного давление в остановленной скв с достаточной степенью точности равно изменению буферного давления, и измерения удобнее и экономичнее проводить на устье скв, используя для этого технические манометры и регистрируя текущее время, или же автономные глубинные манометры. Если же в процессе исследования буферное давление снижается до нуля и уровень ж-ти в скв падает ниже устья, то измерения следует проводить глубинным манометром, спущенным на забой скв (или хотя бы на глубину, обеспечивающую постоянное нахождение его под уровнем).

При исследовании нагнетательныхскв необходимо также иметь в виду, что падение забойного давления после прекращения закачки в течение всего периода, пока имеется избыточное буферное давление, происходит без оттока ж-ти из ствола скв в пласт. Поэтому такие КВД следует обрабатывать методами без учёта притока (оттока). Отток следует учитывать лишь с момента снижения буферного давления до нуля - начиная с этого момента, необходимо периодически определять местоположение понижающегося уровня ж-ти в стволе скв, либо закончить процесс измерения.

Особенности исследования: нагнетательные скв, используемые для закачки и вытеснения нефти водой, определяют темп, хар-р и степень выработки продуктивных пластов. Отметим нект из особенностей:

1) Закачка в пласт пов-тных вод, отличных от пластовых, нарушает тепловой режим, особенно в ПЗП. Проходит заметное изменение вязкости, как при замене, так и при изменении Тпл;

2) Повышение Рнагн выше первоначального Рпл приводит к образованию из нагнетательных скв искусственных зон трещиноватости;

3) Необходимость поинтервального изучения хар-ок коллектора при различныхРнагн с целью оптимального Рпл при max охвате пласта заводнением;

4) Учет потерь Р на трение в стволе скв-н, т.е. в бол-ве случаев определение Рз, а так же снятие кривых притока и падения Р производится по замерам на устье скв. Иногда после остановки нагнскв устьевое давление резко снижается до атмосферного и зарегистрировать КВД не удаётся. В таких случаях режим изменяют уменьшением расхода закачиваемой воды до такой величины, при кт давление на устье в течение всего периода регистрации КВД будет выше атмосф-го.

Также применяются геоф исследования скважин. Основная задача которых- определить куда идет вода. (определяют какой пропласток сколько принимает воды).

Определение коэффициента подачи УШСН

Действительная подача Qд, замеренная на поверхности после сепарации и охлаждения нефти, как правило, меньше теоретической (за исключением насосных скважин с периодическими фонтанными проявлениями) в силу целого ряда причин. Отношение Qд к Qт называют коэффициентом подачи насоса, который учитывает все возможные факторы, отрицательно влияющие на подачу ШСН. Таким образом, коэффициент подачи

Где F - площадь сечения плунжера (или цилиндра насоса); S-величина хода;n-количество ходов плунжера

Для каждой конкретной скважины величина η служит в известной мере показателем правильности выбора оборудования и режима откачки установки. Нормальным считается, если η >0.6 – 0.65.

Однако бывают условия (большие газовые факторы, низкие динамические уровни), когда не удается получить и этих значений коэффициентов подачи, и тем не менее откачка жидкости с помощью ШСН может оставаться самым эффективным способом эксплуатации.

На коэффициент подачи ШСН влияют постоянные и переменные факторы.

К постоянным факторам можно отнести

· влияние свободного газа в откачиваемой смеси;

· уменьшение полезного хода плунжера по сравнению с ходом точки подвеса штанг за счет упругих деформаций насосных штанг и труб;

· уменьшение объема откачиваемой жидкости (усадка) в результате ее охлаждения на поверхности и дегазации в сепарационных устройствах.

К переменным факторам, изменяющимся во времени, можно отнести:

· утечки между цилиндром и плунжером, которые зависят от степени износа насоса и наличия абразивных примесей в откачиваемой жидкости;

· утечки в клапанах насоса из-за их немгновенного закрытия и открытия и, главным образом, из-за их износа и коррозии;

· утечки через неплотности в муфтовых соединениях НКТ, которые все время подвергаются переменным нагрузкам.

Переменные факторы, сводящиеся кразличного рода утечкам, меняются во времени и поэтому их трудно определить расчетным путем, за исключением утечек через зазор между плунжером и цилиндром. Это приводит к тому, что коэффициент подачи η вновь спущенного в скважину насоса, после незначительного его снижения в начальный период в результате приработки плунжера, затем стабилизируется и длительное время остается практически постоянным. Затем он заметно начинает снижаться в результате прогрессирующего износа клапанов, их седел и увеличения зазора между плунжером и цилиндром. Наряду с этим может произойти и резкое уменьшение коэффициента подачи в результате смещения втулок насосов, отворотов и неплотностей в муфтах.

Таким образом, результирующий коэффициент подачи насоса можно представить как произведение нескольких коэффициентов, учитывающих влияние на его подачу различных факторов:

где η1 - коэффициент наполнения цилиндра насоса жидкостью, учитывающий влияние свободного газа; η2—коэффициент, учитывающий влияние уменьшения хода плунжера; η3 - коэффициент утечек, учитывающий наличие неизбежных утечек жидкости при работе насоса; η4 - коэффициент усадки, учитывающий уменьшение объема жидкости при достижении ею поверхностных емкостей.

Газлифтная эксплуатация скважин.

После прекращения фонтанирования из-за нехватки пластовой энергии переходят на механизированный способ эксплуатациискважин, при котором вводят дополнительную энергию извне (с поверхности). Одним из таких способов, при котором вводят энергию в виде сжатого газа, является газлифт.

Использование газлифтного способа эксплуатации скважин в общем виде определяется его преимуществами.
1. Возможность отбора больших объемов жидкости практически при всех диаметрах эксплуатационных колонн и форсированного отбора сильнообводненных скважин.
2. Эксплуатация скважин с большим газовым фактором, т.е. использование энергии пластового газа, в том числе и скважин с забойным давлением ниже давления насыщения.

3. Малое влияние профиля ствола скважины на эффективность работы газлифта, что особенно важно для наклонно направленных скважин, т.е. для условий морских месторождений и районов освоения Севера и Сибири.
4. Отсутствие влияния высоких давлений и температуры продукции скважин, а также наличия в ней мехпримесей (песка) на работу скважин.
5. Гибкость и сравнительная простота регулирования режима работы скважин по дебиту.
6. Простота обслуживания и ремонта газлифтных скважин и большой межремонтный период их работы при использовании современного оборудования.
7. Возможность применения одновременной раздельной эксплуатации, эффективной борьбы с коррозией, отложениями солей и парафина, а также простота исследования скважин. Указанным преимуществам могут быть противопоставлены недостатки.
1. Большие начальные капитальные вложения в строительство компрессорных станций.
2. Сравнительно низкий коэффициент полезного действия (КПД) газлифтной системы.
3. Возможность образования стойких эмульсий в процессе подъема продукции скважин.
Исходя из указанного выше, газлифтный (компрессорный) способ эксплуатации скважин, в первую очередь, выгодно использовать на крупных месторождениях при наличии скважин с большими дебитами и высокими забойными давлениями после периода фонтанирования.
Далее он может быть применен в наклонно направленных скважинах и скважинах с большим содержанием мехпримесей в продукции, т.е. в условиях, когда за основу рациональной эксплуатации принимается межремонтный период (МРП) работы скважин.
При наличии вблизи газовых месторождений (или скважин) с достаточными запасами и необходимым
давлением используют бескомпрессорный газлифт для добычи нефти.

Виды и технологии гидродинамических исследований скважин с УЭЦН.

Существуют три вида исследований: лабораторные, геофизические и гидродинамические. Для определения фильтрационных характеристик пласта и скважин более представительными являются гидродинамические методы исследования. При этих методах исследования непосредственно используются результаты наблюдения жидкости и газа к забоям скважин в пластовых условиях. Эти методы позволяют исключить влияние изменения свойств пласта в призабойной зоне и непосредственно определить фильтрационные характеристики пласта.

Выделяют 2 вида гидродинамических исследований: при неустановившемся и установившемся режимах фильтрации. Исследования скважин при неустан режиме дают больше информ, чем исследования методом установ отборов. При обработке КВД получают среднее значение гидропроводности или проницаемости на различных расстояниях от скважины, определяют коэффициент пьезопроводности и приведенный радиус скважины, оценивают коэф дополнительных потерь давления (показатель скин-эффекта), определяют пластовое давление и приближенный коэффициент продуктивности скв.

При обработке данных исследования методом установившихся отборов определяют коэф продуктивности и пластовое давление. Оценивают приближенноГидропроводность и проницаемость в призабойной зоне. При исследовании скважин, оборудованных УЭЦН, широко используются методы, применяемые при эксплуатации скважин штанговыми скважинными насосными установками. Это применение скважинных манометров для замера забойного давления или давления на приеме насоса, а также определение уровня жидкости в скважине с помощью эхолота или волномера. Помимо этого используют методы присущи лишь данному способу эксплуатации скв.

Невсегда в скважинах с УЭЦН моно спустить манометр, поэтому часто используют звукометрический метод, позволяющий с помощью волномера замерить динамический уровень (скорость отражения звука*время отражения). Затем рассчитывают Рзаб= ρН/10.

Наиболее точен метод непосредственного измерения давления на приеме насоса с помощью скважинного манометра, спускаемого в НКТ и устанавливаемого в специальное запорное устройство, называемое суфлером. Давление на приеме насоса можно определить расчетным путем по давлению на выкиде насоса, измеряемому манометром, спущенном в НКТ, и напору, развиваемому насосом при закрытой манифольдной задвижке, после чего насос некоторое время подает жидкость, сжимая ГЖС в НКТ. Затем подача насоса становится равной нулю, о чем можно судить по стабилизации давления на устье. При нулевом режиме работы насоса давление на выкиде складывается из давления, создаваемого насосом, и гидростатического давления столба жидкости в затрубном пространстве над насосом - давления на приеме. Наиболее простой и наименее точный метод: определение коэф продуктивности по показаниям давления на устье. Обычно целью подобных исследований является качественное выявление причины уменьшения дебита скв: ухудшение свойств призабойной зоны или износ насоса

Коэффициент подачи УШСН.

Действительная подача Qд, замеренная на поверхности после сепарации и охлаждения нефти, как правило, меньше теоретической (за исключением насосных скважин с периодическими фонтанными проявлениями) в силу целого ряда причин. Отношение Qд к Qт называют коэффициентом подачи насоса, который учитывает все возможные факторы, отрицательно влияющие на подачу ШСН. Таким образом, коэффициент подачи

Где F - площадь сечения плунжера (или цилиндра насоса); S-величина хода;n-количество ходов плунжера

Оптимизация режимов работу УЭЦН.

Задача заключается в том, чтобы для каждой конкретной скважины с учетом ее характеристик подобрать все звенья ЭЦН и 1 глубину спуска насоса. Вначале устанавливают необходимые исходные данные - выбирают уравнение притока, определяют свойства нефти воды и газа и их смесей, которые предполагается откачивать из скважины, конструкцию эксплуатационной обсадной колонны глубину спуска насоса находят с учетом расходного газосодержания нефтегазового потока потока на входе Для этою строят кривые распределения давления и расходного газосодержания потока вдоль обсадных труб шагами от забоя снизу вверх, начиная от заданного забойного давления, определяемого по уравнению притока для известного дебита (соответственно кривые 1 и 3 на рис V ] 11.18). По кривой 3 оценивают предварительную глубину спуска насоса ( по допустимым значениям объемного газосодержания на приеме насоса

Для достижения поставленной цели сформулированы следующие задачи:

1. Рассмотреть перспективы и экономическую целесообразность применения регулируемого электропривода в структуре УЭЦН.

2. Сформулировать задачу оптимизации установившихся режимов работы УЭЦН с обоснованием критерия, параметров оптимизации и ограничений.

3. Провести системный1 анализ параметров; определяющих показатели работы УЭЦНи выявить наиболее значимые факторы.

4. Разработать математическую модель УЭЦН, учитывающую* основные технологические и технические параметры:

5. Разработать алгоритм; управления,, обеспечивающий оптимизацию установившихся режимов работы УЭЦН;.

6. Оценить, эффективность разработанного алгоритма путем имитационного моделирования и экспериментальных испытаний;на скважине.

УЭЦН

Под подбором УЭЦН понимается определение типоразмера установки, обеспечивающей заданную добычу пластовой жидкости из скважин при оптимальных рабочих показателях (подаче, напоре, мощности, наработке на отказ, КПД и пр.)

При этом максимальное содержание свободного газа у приема насоса не должно превышать 25 % для установок без газосепараторов, максимально допустимое давление в зоне подвески УЭЦН – не более 25 МПа, температура не более 90 0С. Темп набора кривизны скважины в зоне подвески насоса не более 3 мин. на 10 м. Вначале устанавливают необходимые исходные данные - выбирают уравнение притока, определяют свойства нефти газа и воды и их смесей, конструкцию эксплуатационной обсадной колонны, глубину спуска насоса находят с учетом расходного газосодержания нефтегазового потока на входе.

Производительность УЭЦН регулируется:

1. Методом штуцирования (на устье скважины)

2. При помощи преобразователя частоты:

3. При помощи изменения глубины подвески ЭЦН

4. Замена насосной установки

1.Недостатки газлифтной эксплуатации.

1) большие капитальные затраты при использовании компрессорного метода;

2) низкий КПД всей газлифтной системы (КС, газопровод, скв), высокие энергетич затраты на комплемирование газа;

3) повышенный расход НКТ, особенно при применении двухрядных подъемников;

4) быстрое увеличение расхода энергии на подъем 1 т нефти по мере снижения дебита скважин с течением времени эксплуатации.
5)при обводненноти 69-70% газлифт перестает работать.

1. Достоинства газлифтной эксплуатации.

1) простота и надежность конструкции (минимальное количество подвижных и подверженных износу частей, низкая металоемкость);

2) возможность эксплуатации скважин, осложненных пескопроявлениями и высокими газовыми факторами:

3) обеспечение возможности отбора из скважин больших объемов жидкости (до 1800 ÷1900 т/сут);

4) возможность эксплуатации в глубоких скважинах, глубина которых превышает напоры, достижимые для глубинных насосов;

5) возможность эксплуатации скважин с высокими пластовыми температурами (>150 град.целс)

6) простота регулирования режимов работы

7) расположение технологического оборудования на поверхности (облегчает его наблюдение, ремонт),

8) возможность спуска приборов на забой скважины без прекращения работы, не осложняет проведение гидродинамических исследований

9) централизованная дозировка химреагентов для борьбы с осложнениями.

Методы регулирования работы скважин с УШСН.

Технологический режим работы УСШН можно регулировать двумя способами:

1. изменение длины хода полированного штока (перемещение шатуна на кривошипе по отверстиям);

2. изменение числа качаний головки балансира, т.е. увеличение или уменьшение частоты вращения ведомого вала редуктора (смена шкивов).

. Назначение и технология проведения ГДИ.

Гидродинамические исследования скважин (ГДИС) — совокупность различных мероприятий, направленных на измерение определенных параметров (давление, температура, уровень жидкости, дебит и др.) и отбор проб пластовых флюидов (нефти, воды, газа и газоконденсата) в работающих или остановленных скважинах и их регистрацию во времени.

Методы ГДИС предназначены для изучения продуктивных пластов при их испытании, освоении и эксплуатации в добывающих и нагнетательных скважинах с целью получения данных об их продуктивности и приемистости, фильтрационных параметрах и скин‑факторе, трассировки границ пласта и особенностях зон дренирования, типа пласта коллектора, анизотропии пласта по проницаемости, режима залежи и др.

Методы ГДИС позволяют непосредственно определить гидропроводность и пьезопроводность пласта, продуктивность скважины, оценить качество вскрытия пласта и технологическую эффективность внедрения методов увеличения дебитов скважин. Кроме того, методами ГДИС можно определить тип коллектора, наличие границ неоднородности гидродинамической связи между скважинами и между пластами и т.д.

По технологии исследования различают:

- методы ГДИС на установившихся режимах фильтрации;

- методы ГДИС на неустановившихся режимах фильтрации;

К методам неустановившихся режимов фильтрации можно отнести и метод гидропрослушивания.

При этих исследованиях решается обратная задача теории фильтрации, т.е. при известных дебитах и забойных давлениях определяются параметры пласта.

Метод исследования на установившихся режимах фильтрации предназначен для определения коэффициента продуктивности скважины и характера фильтрации жидкости в пласте.

К методам исследования скважин на неустановившихся режимах фильтрации относятся:

- снятие КВД и КПД в эксплуатационных и нагнетательных скважинах;

- снятие КВУ в эксплуатационных скважинах механизированного фонда, снятие кривой стабилизации давления (КСД) «метод суммарной добычи»;

- экспресс-методы, прослеживание изменения забойного давления (КПЗД).

В отечественных руководствах по ГДИС излагаются в основном методы обработки только на базе представления о плоскорадиальной фильтрации к вертикальным и наклонным скважинам. Это так называемые традиционные методы.

Массовое внедрение на промыслах гидравлического разрыва пласта и переход на бурение горизонтальных скважин и скважин с боковым стволом выдвинуло проблему дальнейшего развития и совершенствования комплекса ГДИС со сложными траекториями фильтрации.

Развитие теории и практики ГДИС в нашей стране и за рубежом шло параллельными путями. Несмотря на различие в способах анализа материалов исследований, базовые, теоретические представления, а также принципы интерпретации результатов исследований скважин у отечественных исследователей и их зарубежных коллег близки.

Современные методы ГДИС являются дальнейшим развитием и существенным дополнением широко известных традиционных ГДИС.

Методы ГДИС являются косвенными методами определения параметров пласта. Их теоретической и методологической основой служат решения прямых и обратных задач подземной гидромеханики, которые не всегда имеют однозначные решения. Поэтому интерпретация ГДИС носит комплексных характер с использованием результатов ГИС, лабораторных и геолого-промысловых исследований.

Выделяют 2 вида гидродинамических исследований: при неустановившемся и установившемся режимах фильтрации. Исследования скважин при неустан режиме дают больше информ, чем исследования методом установ отборов. При обработке КВД получают среднее значение гидропроводности или проницаемости на различных расстояниях от скважины, опрделяют коэффициент пьезопроводности и приведенный радиус скважины, оценивают коэф дополнительных потерь давления (показатель скин-эффекта), определяют пластовое давление и приближенный коэффициент продуктивности скв.

При обработке данных исследования методом установившихся отборов определяют коэф продуктивности и пластовое давление. Оценивают приближенноГидропроводность и проницаемость в призабойной зоне. При исследовании скважин, оборудованных УЭЦН, широко используются методы, применяемые при эксплуатации скважин штанговыми скважинными насосными установками. Это применение скважинных манометров для замера забойного давления или давления на приеме насоса, а также определение уровня жидкости в скважине с помощью эхолота или волномера. Помимо этого используют методы присущи лишь данному способу эксплуатации скв.

Невсегда в скважинах с УЭЦН моно спустить манометр, поэтому часто используют звукометрический метод, позволяющий с помощью волномера замерить динамический уровень (скорость отражения звука*время отражения). Затем рассчитывают Рзаб= ρН/10.

Наиболее точен метод непосредственного измерения давления на приеме насоса с помощью скважинного манометра, спускаемого в НКТ и устанавливаемого в специальное запорное устройство, называемое суфлером. Давление на приеме насоса можно определить расчетным путем по давлению на выкиде насоса, измеряемому манометром, спущенном в НКТ, и напору, развиваемому насосом при закрытой манифольдной задвижке, после чего насос некоторое время подает жидкость, сжимая ГЖС в НКТ. Затем подача насоса становится равной нулю, о чем можно судить по стабилизации давления на устье. При нулевом режиме работы насоса давление на выкиде складывается из давления, создаваемого насосом, и гидростатического давления столба жидкости в затрубном пространстве над насосом - давления на приеме. Наиболее простой и наименее точный метод: определение коэф продуктивности по показаниям давления на устье. Обычно целью подобных исследований является качественное выявление причины уменьшения дебита скв: ухудшение свойств призабойной зоны или износ насоса.

Технологии освоения нагнетательных скважин.

Под освоением нагнетательной скважины подразумевается комплекс мероприятий нацеленных на очистку забоя скважины и ПЗП и получение коэффициента приемистости, соответствующего естественной проницаемости пласта.

Процесс освоения под нагнетание для скважин, пробуренных в НЗ и ВЗ различен. Скважины, пробуренные в НЗ, сначала интенсивно отрабатываются на нефть 1-2 года и только после этого переводятся под нагнетание. При этом проводится интенсивная промывка скважины горячей водой или нефтью для удаления АСПО. Перевод скважин в нагнетательном ряду осуществляется через одну. Пропущенные скважины осваиваются под нагнетание после их обводнения.

Освоение скважин в ВЗ начинается только после тщательной промывки до достижения КВЧ(коагулированных взвешенных частиц) в выходящем потоке 3-5 мг/л. По трудности освоения можно выделить 3 группы скважин. В зависимости от этого различаются и методы освоения.

1. Пробуренные в монолитных высокопроницаемых песчаниках. В таких скважинах нагнетание осуществляется непосредственно после промывки без дополнительных мероприятий. Скважины характеризуются устойчиво высокими коэффициентами приемистости.

2. … в слоистом пласте пониженной проницаемости. Осуществляется интенсивный дренаж скважины различными методами (поршневание, ЭЦН, компрессорным способом и т.д.) до стабилизации КВЧ. Возможно проведение СКО//ГРП, при нагнетании – использование повышенных давлений закачки для поддержания трещин в раскрытом состоянии. Такие скважины характеризуются невысокими и нестабильными коэффициентами приемистости.

3. … тонкое чередование прослоев коллектора и неколлектора. Освоение требует применения самых эффективных методов воздействия на ПЗП, как, например, поинтервального гидроразрыва пласта, кислотных обработок и очень больших давлений нагнетания, соизмеримых с горным. Приемистость скважин III группы может быстро затухать в течение 2 - 3 месяцев. Необходим жесткий контроль качества нагнетаемой воды.

Технологии вторичного вскрытия пластов.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...