Главная Обратная связь

Дисциплины:






Общий случай интерференции



При взятии интеграла в соотношении [1] полагалось, что разность фаз не зависит от времени. Реальные же источники света излучают с постоянной фазой лишь в течение некоторого характерного времени, называемого временем когерентности. По этой причине, при рассмотрении вопросов интерференции оперируют понятием когерентности волн. Волны называют когерентными, если разность фаз этих волн не зависит от времени. В общем случае говорят, что волны частично когерентны. При этом поскольку существует некоторая зависимость от времени, интерференционная картина изменяется во времени, что приводит к ухудшению контраста либо к исчезновению полос вовсе. При этом в рассмотрении задачи интерференции, вообще говоря и не монохроматическгого (полихроматического) излучения, вводят понятие комплексной степени когерентности . Интерференционное соотношение принимает вид

Оно называется общим законом интерференции стационарных оптических полей.

36 Расчет интерференционной картины от двух источников

 

Рассмотрим более подробно основные свойства интерференционной картины, создаваемой двумя источниками электромагнитных волн одинаковой интенсивности и наблюдаемой на плоском экране, расположенным на расстоянии от плоскости расположения от источников. В качестве таких источников могут мыслиться, например две бесконечно-узкие, параллельные друг - другу щели или два отверстия бесконечно малого диаметра, расстояние между которыми , прорезанные в плоском непрозрачном экране (рис. 4.3a). Пусть источники электромагнитных волн располагаются в однородной среде с показателем преломления .

Рис. 4.3a.

 

Область, в которой волны источников перекрываются, называется полем интерференции. В поле интерференции имеются места, где волны источников будут складываться в фазе. В этих местах будут отмечаться максимумы интенсивности электромагнитного поля. Там же, где волны будут складываться в противофазе - минимальная интенсивность . Если в поле интерференции поместить непрозрачный экран, то будет наблюдается чередование светлых и тёмных полос (рис. 4.3a), представляющие собой интерференционную картину. Параметрами интерференционной картины являются положение её максимумов и минимумов , а также связанная с ними ширина полос интерференционной картины (рис. 4.3a).

 

В соответствии с (4.4a) для расчёта этих величин надо найти разность фаз излучаемых источниками волн в точке наблюдения, расположенной на экране. Как показано в главе 3, для расчёта надо определить оптическую разность хода волн от первого и второго источников (рис. 4.3a) до точки наблюдения, поскольку



 

,

 

где - показатель преломления среды, в которой распространяются электромагнитные волны; - расстояния, проходимые волнами соответственно от первого и второго источников (рис. 4.3a) до точки наблюдения; - длина волны.

 

Из рис. 4.3a имеем очевидные соотношения, определяющие расстояния :

 

(4.6a)

 

(4.6b)

 

Отсюда следует, что

 

 

Принимая во внимание, что при условии , получаем:

 

.

 

Использование этого соотношения приводит к следующему выражению для оптической разности хода волн :

 

. (4.7)

 

Максимум интерференционной картины будет наблюдаться при условии синфазного сложения колебаний волн источников, которое имеет место при . Исходя из связи между разностью фаз колебаний и оптической разностью хода , можно заключить, что синфазное сложение колебаний имеет место при условии кратности оптической разности хода целому числу длин волны в среде :

 

, (4.8)

 

где - произвольное целое число, равное .

 

Найдём координату , определяющую положение - ого максимума интерференционной картины:

 

, (4.9a)

 

где - длина волны в вакууме, связанная с длиной волны в среде распространения с помощью формулы .

 

Порядком интерференционного максимума называют его номер ' ', отсчитываемый от центрального ( ), которому соответствует центр интерференционной картины , где складываются волны от источников, проходящие одинаковый путь ( ) .

 

Аналогичным образом можно найти положения минимумов интерференционной картины двух источников, определяемые координатами , если положить оптическую разность хода кратной нечётному числу полуволн:

 

. (4.9b)

 

где - произвольное целое число, равное .

 

Отсюда следует, что в рассматриваемой интерференционной картине положения соседних интерференционных максимумов и минимумов находятся на одинаковом расстоянии друг от друга и не зависят от того, насколько эти максимумы удалены от центра интерференционной картины. Это свойство максимумов и минимумов позволяет определить ширину интерференционной полосы.

 

Ширина интерференционной полосы определяется, как расстояние между соседними интерференционными максимумами или минимумами, интерференционные порядки которых отличаются на единицу. Для рассматриваемой интерференционной картины двух источников волн одинаковой интенсивности в соответствии с выражениями (4.9) ширина полосы оказывается равной:

 

. (4.10)

 

Из этой формулы следует, что расстояние между интерференционными полосами растёт при уменьшении . Кроме того, если расстояние до экрана соизмеримо с расстоянием между щелями ( ) , то

 

.

 

В этом случае для световых волн, длина волны которых порядка долей микрона, интерференционные полосы неразличимы невооружённым взглядом и для их наблюдения необходимо использовать микроскоп.

 

Рассмотрим распределение интенсивности света в плоскости интерференционной картины, если интенсивность источников одинаковы, т.е. . Из выражения (4.4a) в этом случае следует:

 

, (4.11)

 

где - волновое число электромагнитных волн в вакууме, - оптическая разность хода волн от источников до точки наблюдения, равная в соответствии с выражением (4.7).

Рис. 4.3b.

 

В плоскости экрана интенсивность интерференционной картины (рис. 4.3b) двух точечных монохроматических источников электромагнитных волн одинаковой интенсивности меняется в зависимости от координаты точки наблюдения на экране в соответствии с выражением, следующим из (4.4a)

 

.

 

Изменение интенсивности в соответствии с этим выражением в оптике известно, как изменение интенсивности по закону "квадрат косинуса". В максимумах интенсивность интерференционной картины в четыре раза превышает интенсивность интерферирующих источников волны. В минимумах интенсивность равна нулю. Среднее значение распределения интенсивности на интерференционной картине равно сумме интенсивностей каждого из интерферирующих источников. На рис. 4.3c приводится фотография распределения интенсивности интерференционной картины от двух щелей. Полутона, видные на фотографии, соответствуют изменению интенсивности по закону 'квадрат косинуса '.

 

Для немонохроматических источников электромагнитных волн в центре картины максимумы всех составляющих колебаний разных частот интерферирующих источников совпадают. Однако, по мере удаления от центра ввиду того, что направления на максимумы и минимумы зависят от длины волны, может происходить ' наложение' интерференционных максимумов одной волны на минимумы другой. В результате

Рис. 4.3c.

 

интерференционная картина немонохроматических источников будет смазываться ближе к краю их интерференционного поля. Следовательно, число наблюдаемых интерференционных полос будет меньше по сравнению со случаем монохроматических источников. Возможность наблюдения интерференционной картины электромагнитных волн обусловлена свойством когерентности их источников, подробнее рассматриваемой в следующем параграфе.

37. Интерференция в тонких пленках

В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки

 

 


В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.

Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности либо на экране, расположенном в фокальной плоскости собирающей линзы

 

В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC:

38 Принцип Гюйгенса-Френеля

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.
Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Густав Кирхгоф придал принципу Гюйгенса — Френеля строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа (см. метод Кирхгофа).

Фронтом волны точечного источника в однородном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса — Френеля является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Особенность дифракционных эффектов состоит в том, что дифракционная картина в каждой точке пространства является результатом интерференции лучей от большого числа вторичных источников Гюйгенса. Объяснение этих эффектов было осуществлено Френелем и получило название принципа Гюйгенса - Френеля. Сущность принципа Гюйгенса - Френеля можно представить в виде нескольких положений:

всю волновую поверхность, возбуждаемую каким-либо источником S0 площадью S, можно разбить на малые участки с равными площадями dS, которые будут являться системой вторичных источников, испускающих вторичные волны;

эти вторичные источники, эквивалентные одному и тому же первичному источнику S0, когерентны между собой. Поэтому волны, распространяющиеся от источника S0, в любой точке пространства должны являться результатом интерференции всех вторичных волн;

мощности излучения всех вторичных источников - участков волновой поверхности с одинаковыми площадями – одинаковы;

каждый вторичный источник (с площадью dS) излучает преимущественно в направлении внешней нормали п к волновой поверхности в этой точке; амплитуда вторичных волн в направлении, составляющем с п угол , тем меньше, чем больше угол а, и равна нулю;

амплитуда вторичных волн, дошедших до данной точки пространства, зависит от расстояния вторичного источника до этой точки: чем больше расстояние, тем меньше амплитуда;

когда часть волновой поверхности S прикрыта непрозрачным экраном, вторичные волны излучаются только открытыми участками этой поверхности. При этом часть световой волны, закрытая непрозрачным экраном, не действует совсем, а открытые области волны действуют так, как если бы экрана совсем не было.

Метод зон Френеля

Зоны Френеля, участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (или звука). Впервые этот метод применил О. Френель в 1815—19. Суть метода такова. Пусть от светящейся точки Q (рис.) распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р. Разделим поверхность волны S на кольцевые зоны; для этого проведём из точки Р сферы радиусами PO, Pa = PO + l/2; Pb = Pa + l/2, Pc = Pb + l/2, (О — точка пересечения поверхности волны с линией PQ; l — длина световой волны). Кольцеобразные участки поверхности волны, "вырезаемые" из неё этими сферами, и называется З. Ф. Волновой процесс в точке Р можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой З. Ф. в отдельности. Амплитуда таких колебаний медленно убывает с возрастанием номера зоны (отсчитываемого от точки О), а фазы колебаний, вызываемых в Р смежными зонами, противоположны. Поэтому волны, приходящие в Р от двух смежных зон, гасят друг друга, а действие зон, следующих через одну, складывается. Если волна распространяется, не встречая препятствий, то, как показывает расчёт, её действие (сумма воздействий всех З. Ф.) эквивалентно действию половины первой зоны. Если же при помощи экрана с прозрачными концентрическими участками выделить части волны, соответствующие, например, N нечётным зонам Френеля, то действие всех выделенных зон сложится и амплитуда колебаний Uнечёт в точке Р возрастёт в 2N раз, а интенсивность света в 4N2 раз, причём освещённость в точках, окружающих Р, уменьшится. То же получится при выделении только чётных зон, но фаза суммарной волны Uчётбудет иметь противоположный знак.

Такие зонные экраны (т. н. линзы Френеля) находят применение не только в оптике, но и в акустике и радиотехнике — в области достаточно малых длин волн, когда размеры линз получаются не слишком большими (сантиметровые радиоволны, ультразвуковые волны).

Метод З. Ф. позволяет быстро и наглядно составлять качественное, а иногда и довольно точное количественное представление о результате дифракции волн при различных сложных условиях их распространения. Он применяется поэтому не только в оптике, но и при изучении распространения радио- и звуковых волн для определения эффективной трассы "луча", идущего от передатчика к приёмнику; для выяснения того, будут ли при данных условиях играть роль дифракционные явления; для ориентировки в вопросах о направленности излучения, фокусировке волн и т.п.

Дифракция Френеля

Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана.

На рисунке схематично изображён (слева) непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется на другом экране - справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затемнена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец.

Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода. НЕ ПОЛНОСТЬЮ





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...