Главная Обратная связь

Дисциплины:






Оптимизация системы распознавания корреспонденции



Цель работы: оптимизация настройки системы распознавания индекса корреспонденции на основе методологии математического планирования эксперимента (МПЭ).

Программное обеспечение:

Пакеты программ “Статистика” и ”Matlab”, начиная с 6 версии.

y1 y2

Рис.1.Объект исследования

Объект исследования – это система, включающая в себя совокупность входных настроечных параметров (x1,x2) и выходных, результирующих характеристик (y1,y2).

Настроечные параметры (воздействующие факторы):

x1 – разрешающая способность фотосчитывателя. Выбрана на двух предельных уровнях: максимальном – 150 ед. на дюйм и минимальном -50 ед. на дюйм.

x2 - продолжительность экспозиции. Выбрана на двух предельных уровнях: 0,1 и 0,5 сек.

Выходные характеристики:

y1 – производительность системы (количество обработанной корреспонденции за минуту).

y2 – процент сбоев.

Основная задача работы:рассчитать такое сочетание величин входных настроечных параметров, которое обеспечит максимальную производительность системы при заданном предельном количестве сбоев – 5%.

Далее работа должна проводиться в 4 этапа.

Первый этап - планирование и проведение двухфакторного эксперимента. С этой целью величины настроечных параметров приведены к одному масштабу (нормированы), а именно: все максимальные величины равны 1 (единице), а минимальные величины - -1(минус единице).

В данном случае построен двухфакторный план первого порядка, представленный в табл. 1.

Таблица 1

План и результаты эксперимента

Номер опыта Величины факторов Результаты
x1 x2 y1 y2
-1 -1 -1 1 1 -1 1 1 190 210 75 95 170 180 56 76 28 22 2 4 4 6 1 2

Примечание: каждый опыт дублирован 2 раза

Второй этап:построение экспериментально-статистической (регрессионной) модели, количественно описывающей зависимость результатов эксперимента от комбинированного влияния исследуемых факторов.

Модель строится на основе метода множественной регрессии. Используем с этой целью статистический пакет “Статистика”. В электронную таблицу данные вводятся в соответствии со схемой, представленной в табл.2.

Таблица 2

Схема введения данных в электронную таблицу в

пакете ‘Статистика’

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Примечание: третья колонка представляет собой произведение первых двух (x1x2).Это необходимо для оценки эффекта взаимодействия факторов.

В результате программа “Множественная регрессия” вычисляет следующие параметры: общую оценку статистической значимости модели (p), величина которой не должна превышать значение 0,05 и коэффициенты модели (b), каждый из которых является оценкой соответствующего влияния (b0 – постоянная составляющая, b1и b2 – оценки влияния факторов x1и x2, b12 – оценка эффекта взаимодействия исследуемых факторов.



Оценка значимости модели: p <0,05 (модель статистически значима).

Коэффициенты модели:

Первая модель (производительность):

B0 = 131,5; p<0,05 - коэффициент значим.

B1 = -11; p=0,07 (p>0,05) – коэффициент не значим.

B2 = -56; p<0,05 (p<0,05) – коэффициент значим.

B1-2= 1,5; p=0,7 (p>0,05) – коэффициент не значим.

Модель 1: y = 131,5 - 11x1 – 56x2 + 1,5x1x2 .

Вторая модель (процент сбоев):

B0 = 8,6; p<0,05 - коэффициент значим.

B1 = -5,4; <0,05 - коэффициент значим.

B2 = -6,4; p<0,05 (p<0,05) – коэффициент значим.

B1-2= 4,6; <0,05 - коэффициент значим.

Модель 2: y = 8,6 – 5,4x1 – 6,4x2 + 4,6x1x2 .

Третий этап:графическое представление моделей.

С этой целью используется система “Matlab-6,5”.

Первая модель:

>> [X,Y]=meshgrid(-1:0.2:1,-1:0.2:1);

>>Z=131.5 -11*X.^1.-56*Y.^1.+1.5*X.^1.*Y.^1.;

>>[C,h]=contour(X,Y,Z); clabel(C,h)

 

Для второй модели изменяются только величины коэффициентов во второй строке.

Дорисовка осей (стрелок с обозначениями) и обозначения значений факторов в натуральных единицах осуществляется с помощью меню.

Ниже представлены обе модели в графическом виде с помощью линий равного уровня. Возле каждой линии отмечена соответствующая величина функции отклика (y).

 

Рис.1. Графическое представление зависимости производительности системы

(y1) от комбинированного воздействия исследуемых факторов.

 

Из рисунка следует, что максимальная производительность (около200 писем) имеет место при минимальных величинах факторов. При этом наибольшее влияние оказывает продолжительность экспозиции (x2). о чем свидетельствует и соотношение величин коэффициентов в модели по абсолютной величине (b2=-56>b1=-11).

 

 

Рис.2. . Графическое представление зависимости процента сбоев

(y2) от комбинированного воздействия исследуемых факторов.

 

На рисунке видно, что минимальный процент сбоев имеет место при максимальных величинах факторов.

Четвертый этап: оптимизация системы.

В качестве целевой функции (F) выбирается величина производительности системы: F = y1→ max, а на величину процента сбоев накладывается ограничение: y2 <= 5. Необходимо найти такое сочетание величин факторов (x1 и x2), которое обеспечит выполнение указанных условий.

Используется графический метод. С этой целью линия равного уровня, определяющая заданную границу процента сбоев (y=5), переносится из рис.2 в рис.1. В результате формируется комплексный рисунок (рис.3). Из него следует, что оптимум настройки соответствует точке со следующими координатами: x1=150ед., x2=0,1сек. При такой настройке системы обеспечивается производительность системы 175 писем при проценте сбоев не превышающем 5. Более высокая производительность возможна только при большем проценте сбоев, что в данном случае будет противоречить заданным ограничениям.

Рис.3.Графический метод оптимизации системы.

 

Задание: в соответствии с приведенным примером оптимизировать систему, результаты спланированного эксперимента с которой представлены ниже:

Таблица 3

План и результаты эксперимента

яяНомер опыта Величины факторов Результаты
x1 x2 y1 y2
-1 -1 -1 1 1 -1 1 1 190 210 85 100 170 180 65 86 28 22 2 4 4 6 1 2

Примечания: 1) каждый опыт дублирован 2 раза; 2) для задания различных вариантов возможно изменение результатов эксперимента (y1 и y2).





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...