Решение систем линейных уравнений методом Гаусса
Одним из универсальных и эффективных методов решения линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.
Напомним, две системы называются эквивалентными(равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются при элементарных преобразованиях уравнений системы:
1) умножение обеих частей уравнения на число отличное от нуля;
2) прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;
3) перестановка двух уравнений.
Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступенчатому,или треугольномувиду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.
Предположим, что коэффициент данной системы , в противном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент при был отличен от нуля.
Преобразуем систему, исключив неизвестное во всех уравнениях, кроме первого. Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалентную систему

Здесь – новые значения коэффициентов и свободных членов, которые получаются после первого шага.
Аналогичным образом, считая главным элементом , исключим неизвестное из всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему
,
где , ,…, – главные элементы системы .
Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида , их отбрасывают, так как им удовлетворяют любые наборы чисел . Если же при появится уравнение вида , которое не имеет решений, то это свидетельствует о несовместности системы.
При обратном ходе из последнего уравнения преобразованной ступенчатой системы выражается первое неизвестное через все остальные неизвестные , которые называют свободными. Затем выражение переменной из последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная . Аналогичным образом последовательно определяются переменные . Переменные , выраженные через свободные переменные, называются базисными (зависимыми). В результате получается общее решение системы линейных уравнений.
Чтобы найти частное решение системы, свободным неизвестным в общем решении придаются произвольные значения и вычисляются значения переменных .
Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы
.
Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных не равно числу уравнений .
Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу к ступенчатому виду, легко определить ранги матрицы и расширенной матрицы и применить теорему Кронекера - Капелли.
Пример 2.1Методом Гаусса решить систему

Решение. Число уравнений и число неизвестных .
Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов .

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.
Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.
Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.
Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.
.
В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.
Так как ,система является совместной и определенной.
Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения . Подставим во второе уравнение и получим .
Подставим и в первое уравнение, найдём .
Итак 
Пример 2.2. Исследовать систему на совместность и в случае совместности найти решение:

Решение.Применим к данной системе метод Гаусса.
Запишем расширенную матрицу системы, предварительно для удобства вычислений поменяв местами вторую и первую строку. Приведем ее к ступенчатому виду.
̴ ̴ .
Найдем ранги матриц: . Так как ,то система является несовместной, т.е. не имеет решений.
Иначе говоря, система содержит противоречивое уравнение вида:
или , поэтому является несовместной.
|