Главная Обратная связь

Дисциплины:






Двошарова нейронна мережа



6.Комп’ютерні cистеми управління на основі засобів нечіткої логіки.

Нечеткие множества в системах управленияНаиболее важным применением теории нечетких множеств являются контроллеры нечеткой логики. Их функционирование несколько отличается от работы обычных контроллеров; для описания системы вместо дифференционных уравнений используются знания экспертов. Эти знания могут быть выражены с помощью лингвистических переменных, которые описаны нечеткими множествами.

Общая структура нечеткого микроконтроллераОбщая структура микроконтроллера, использующего нечеткую логику, показана на рис.1. Она содержит:

  • блок фаззификации;
  • базу знаний;
  • блок решений;
  • блок дефаззификации.

Блок фаззификации преобразует четкие величины, измеренные на выходе объекта управления, в нечеткие величины, которые описаны лингвистическими переменными в базе знаний.

Блок решений использует нечеткие условные ( if - then ) правила, заложенные в базу знаний, для преобразования нечетких входных данных в необходимые управляющие влияния, которые также носят нечеткий характер.

Блок дефаззификации превращает нечеткие данные с выхода блока решений в четкую величину, которая используется для управления объектом.

Рис. 1. Общая структура нечеткого микроконтроллера

В качестве примера известных микроконтроллеров, использующих нечеткую логику можно назвать 68HC11, 68HC12 фирмы Motorola, MCS-96 фирмы Intel, а также некоторые другие.

Все системы с нечеткой логикой функционируют по одному принципу: показания измерительных приборов: фаззифицируются (превращаются в нечеткий формат),обрабатываются, дефаззифицируются и в виде обычных сигналов подаются на исполнительные устройства.

В последнее десятилетие в области автоматического управления различными техническими устройствами и, а частности, в изделиях бытовой техники получили развитие системы, основанные на так называемой «нечеткой логике» (Fuzzy Logic).

В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает иной уровень подход, при котором постулируется лишь минимальный набор закономерностей.

 

Нечеткие числа, получаемые в результате «не вполне точных измерений», во многом аналогичны распределениям теории вероятностей. В пределе, при возрастании точности, нечеткая логика приходит к стандартной, Булевой. По сравнению с вероятностным методом, нечеткий метод позволяет резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличений быстродействия нечетких систем.

7.Реалізація довільної логічної функції на штучних нейронних мережах.



Часто, для того чтобы продемонстрировать ограниченные возможности однослойных персептронов при решении задач прибегают к рассмотрению так называемой проблемы XOR – исключающего ИЛИ.

Суть задачи заключаются в следующем. Дана логическая функция XOR – исключающее ИЛИ. Это функция от двух аргументов, каждый из которых может быть нулем или единицей. Она принимает значение , когда один из аргументов равен единице, но не оба, иначе . Проблему можно проиллюстрировать с помощью однослойной однонейронной системы с двумя входами, показанной на рисунке ниже.

Обозначим один вход через , а другой через , тогда все их возможные комбинации будут состоять из четырех точек на плоскости. Таблица ниже показывает требуемую связь между входами и выходом, где входные комбинации, которые должны давать нулевой выход, помечены и , единичный выход – и .

Точки Значение Значение Требуемый выход

Один нейрон с двумя входами может сформировать решающую поверхность в виде произвольной прямой. Для того, чтобы сеть реализовала функцию XOR, заданную таблицей выше, нужно расположить прямую так, чтобы точки были с одной стороны прямой, а точки – с другой. Попытавшись нарисовать такую прямую на рисунке ниже, убеждаемся, что это невозможно. Это означает, что какие бы значения ни приписывались весам и порогу, однослойная нейронная сеть неспособна воспроизвести соотношение между входом и выходом, требуемое для представления функции XOR.

8.Процедури прийняття рішень в системах керування на основі нечіткої логіки.

Одним з основних напрямів використання СНВ є розв’язування задач керування. Під системою керування [5] будемо розуміти з’єднання елементів виду

в єдину конфігурацію, яка забезпечує їм необхідну поведінку для досягнення поставленої цілі. Зв'язок між входом (вектор-функцією ) і виходом (вектор-функцією ) в елементі системи (функціональному блоці) – це перетворення одного сигналу (причини) в інший (наслідок). Вся система керування (СК) теж може бути представлення аналогічною схемою:

Рис. 4.2. Загальна схема системи керування

9.Розпізнавання рукописних букв нейронними мережами.

10.Структура та класифікація експертних систем як засоба штучного інтелекту.

База данных предназначена для временного хранения фактов или гипотез, являющихся промежуточными решениями или результатом общения системы с внешней средой, в качестве которой обычно выступает человек, ведущий диалог с экспертной системой.

Машина логического вывода - механизм рассуждений, оперирующий знаниями и данными с целью получения новых данных из знаний и других данных, имеющихся в рабочей памяти. Машина логического вывода может реализовывать рассуждения в виде: дедуктивного вывода (прямого, обратного, смешанного); нечеткого вывода; вероятностного вывода; унификации (подобно тому, как это реализовано в Прологе); поиска решения с разбиением на последовательность подзадач; поиска решения с использованием стратегии разбиения пространства поиска с учетом уровней абстрагирования решения или понятий, с ними связанных; монотонного или немонотонного рассуждения, рассуждений с использованием механизма аргументации; ассоциативного поиска с использованием нейронных сетей; вывода с использованием механизма лингвистической переменной.

Подсистема общения служит для ведения диалога с пользователем, в ходе которого ЭС запрашивает у пользователя необходимые факты для процесса рассуждения, а также, дающая возможность пользователю в какой-то степени контролировать и корректировать ход рассуждений экспертной системы.

Подсистема объяснений необходима для того, чтобы дать возможность пользователю контролировать ход рассуждений и, может быть, учиться у экспертной системы. Если нет этой подсистемы, экспертная система выглядит для пользователя как "вещь в себе", решениям которой можно либо верить либо нет. Нормальный пользователь выбирает последнее, и такая ЭС не имеет перспектив для использования.

Подсистема приобретения знаний служит для корректировки и пополнения базы знаний. В простейшем случае это - интеллектуальный редактор базы знаний, в более сложных экспертных системах - средства для извлечения знаний из баз данных, неструктурированного текста, графической информации и т.д.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...