Главная Обратная связь

Дисциплины:






ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ



ЭПЮР ПРЯМОЙ. ТОЧКА НА ПРЯМОЙ. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ

Принадлежность точки прямой линии. Если точка принадлежит прямой в пространстве, то проекции этой точки на эпюре будут принадлежать одноименным проекциям прямой (точка С на рис.3.1). При ортогональном проецировании сохраняется свойство пропорциональности длин: в каком отношении точка делит отрезок прямой в пространстве, в таком же отношении ее проекции делят одноименные проекции отрезка.

Только для горизонтальных, фронтальных, а также проецирующих прямых длину отрезка и углы его наклона к плоскостям проекций можно определить по эпюру. Прямая, параллельная плоскости проекций, проецируется на эту плоскость без искажения.

Для определения длины отрезка прямой общего положения, а также профильной прямой используют метод прямоугольного треугольника, согласно которому величина отрезка прямой определяется гипотенузой прямоугольного треугольника, одним из катетов которого является одна из проекций отрезка, а вторым – разность удаления концов отрезка от той плоскости на которой взята проекция.

Взаимное положение прямых. Прямые в пространстве могут быть параллельными, пересекающимися и скрещивающимися. если прямые в пространстветпараллельны, то на эпюре одноименные проекции этих прямых параллельны. Если прямые пересекаются, то на эпюре одноименные проекции прямых пересекаются и проекции точки пересечения лежат на одной линии связи. Если две прямые в пространстве скрещиваются, то их одноименные проекции могут пересекаться в точках, не лежащих на одной линии связи.

Прямой угол проецируется без искажения, если хотя бы одна из сторон прямого угла параллельна плоскости проекций (теорема о проецировании прямого угла).

 

 

ПЛОСКОСТЬ. ПРЯМАЯ И ТОЧКА В ПЛОСКОСТИ. ПАРАЛЛЕЛЬНОСТЬ ДВУХ ПЛОСКОСТЕЙ.ПЕРЕСЕЧЕНИЕ ДВУХ ПЛОСКОСТЕЙ

Плоскость в пространстве однозначно определена тремя точками, не лежащими на одной прямой. В связи с этим существует несколько способов задания плоскости на эпюре, среди которых отметим следующие (рис.5.1):

1) тремя точками, не принадлежащими одной прямой (рис.5.1,а);

2) любой плоской фигурой, например, треугольником (рис.5.1,б);

3) прямой, и не принадлежащей ей точкой (рис.5.1,в);

4) двумя пересекающимися прямыми (рис.5.1,г);

5) двумя параллельными прямыми (рис.5.1,д).

Виды плоскостей. Плоскость, произвольно расположенная в пространстве (по отношению к плоскостям проекций), называется плоскостью общего положения. Все плоскости, изображенные на рис.5.1 являются плоскостями общего положения.

Плоскость, перпендикулярная одной или двум плоскостям проекций, называется плоскостью частного положения, причем плоскость перпендикулярная одной из плоскостей проекций носит название проецирующей плоскости: горизонтально проецирующей если a^p1 или фронтально-проецирующей a^p2 (рис.5.2). На эпюрах проецирующие плоскости задаются своим следом на соответствующей плоскости проекций.




 

 

ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ.

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ

Прямая может лежать в плоскости, пересекаться с плоско­стью и быть параллельна плоскости.

Если прямая параллельна проецирующей плоскости, то на эпюре будут параллельны одноименные проекции прямой и следа плоскости.

Если прямая параллельна плоскости общего положения, то она должна быть параллельна какой-либо прямой в этой плоско­сти.

Точка пересечения прямой и проецирующей плоскости на эпюре определяется как точка пересечения одноименных проек­ций и следа плоскости.

Точка пересечения прямой и плоскости общего положения определяется с помощью метода вспомогательных секущих плоскостей в следующем порядке:

а) через прямую нужно провести вспомогательную проеци­рующую плоскость;

б) построить линию пересечения вспомогательной плоско­сти с заданной;

в) точка пересечения заданной прямой и построенной ли­нии и будет искомой.

Если прямая перпендикулярна плоскости, то она должна быть перпендикулярна двум пересекающимся прямым плоскости, например, главным линиям плоскости, горизонтали h и фронтали f . Тогда проекции прямой l(l1,l2), перпендикулярной плоскости, будут перпендикулярны соответствующим проекциям главных ли­ний плоскости: l1^h1, l2^f2.

Две плоскости взаимно перпендикулярны, если в одной из них можно провести прямую, перпендикулярную другой плоскости.

Две прямые взаимно перпендикулярны, если одна из них лежит в плоскости, перпендикулярной второй прямой.

 

7. ПОВЕРХНОСТИ. СЕЧЕНИЕ ПОВЕРХНОСТЕЙ ПЛОСКОСТЯМИ ЧАСТНОГО ПОЛОЖЕНИЯ

7.1. Основные теоретические положения.

Поверхность представляет собой множество последовательных положений линии, перемещающейся в пространстве. Эту линию называют образующей. Закон перемещения образующей может быть задан тоже линиями. Эти линии называются направляющими. Гранные поверхности образуются перемещением прямолинейной образующей L по ломаной направляющей. Поверхности вращения образуются вращением образующей L вокруг прямой i - оси вращения, при этом направляющими обычно являются окружностями.

Вид поверхности зависит от формы образующей линии и от закона перемещения ее в пространстве вдоль направляющей. Точку на гранной поверхности можно построить с помощью образующей, проходящей через эту точку (рис.7.1) Каждая точка образующей поверхности вращения описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности называются параллелями. Кривые на поверхности вращения, образующиеся в результате пересечения поверхности вращения плоскостями, проходящими через ось вращения, называются меридианами. Строить точки на поверхности вращения удобнее всего с помощью параллелей (рис.7.2).

Линия сечения поверхности проецирующей плоскостью стро­ится по точкам пересечения образующих поверхности или ее параллелей с плоско­стью. Для гранных тел линией сечения будет ломаная, построенная на эпюре по точкам пересечения следа проецирую­щей плоскости с ребрами гранной поверхности. Если даны тела вращения, то для решения задачи нужно выбрать несколько, принадлежащих следу секущей плоскости, точек, провести через выбранные точки параллели (или образующие) , определить точки пересечения их со следом секущей плоскости; построить по ним лекальную кривую сечения. При этом в первую очередь следует опреде­лить характерные точки линии сечения на очерковых образующих (наиболее близкие, наиболее удаленные и др.).

 





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...