Главная Обратная связь

Дисциплины:






Комплексне число як вектор



 

Кожному к.ч. відповідає єдиний радіус-вектор , і навпаки, кожному радіусу-вектору відповідає єдине к.ч. ( рис.1.1). Ми будемо зображати к.ч. відповідним йому радіус-вектором або довільним направленим відрізком, який при паралельному переносі збігається з . Зрозуміло, що модулі к.ч. і відповідного йому вектора рівні.

Якщо вектор зображає к.ч. , то домовимось писати .

Нехай Розглянемо паралелограм , див. рис.1.3.

 

Рис.1.3

Очевидно,

, тобто сума і різниця к.ч. відповідають сумі і різниці векторів. Таким чином, додавання і віднімання набуває простого геометричного змісту.

Множення і ділення к.ч.в геометричній формі розглядаються в §1.14.

Приклад. Доведемо нерівність , яка є узагальненням нерівності абсолютних величин дійсних чисел.

Використовуємо простий факт: сума довжин довільних двох сторін трикутника більша довжини третьої сторони. З рис. 1.3 випливає, що , тобто .

Випадок чисел, розміщених на одній прямій пропонуємо розглянути самостійно.

Приклад.Знайти суму і різницю і , де , . Переконатися за допомогою геометричної побудови, що ці вектори можна додавати і віднімати за правилом паралелограма.

Розв’язання.

.

Виконати самостійно

В умовах попереднього прикладу знайти і , де 1) , ;

2) , .

 

4.12. Кут нахилу вектора до осі

 

Розглянемо довільний ненульовий вектор ( див. рис. 1.4). Величина кута j, утвореного обертанням осі в площині навколо точки до суміщення її з напрямком вектора , називається кутом нахилу цього вектора до осі ; при цьому j , якщо обертання здійснюється проти годинкової стрілки, і j при обертанні за годинковою стрілкою; якщо напрямок збігається з напрямком , то j .

Рис. 1.4

Таким чином, кут нахилу задає напрямок вектора. З рис.1.4. випливає , що додатний j+ і від’ємний j- кути визначають один і той же напрямок.

Очевидно також, якщо довільний кут j задає деякий напрямок , то такий же напрямок будуть задавати і кути , де . Отже, за кут нахилу вектора можна приймати будь-який з кутів , де ціле число.

Приклад. Легко перевірити, що кути 1350,4950,-2250,-9450 визначають один і той же напрямок ( відносно осі ).

 





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...