Главная Обратная связь

Дисциплины:






Поляризация при отражении и преломлении



 

Пусть естественный свет падает под углом θ1 на поверхность раздела двух изотропных диэлектриков с показателями преломления n1 и n2 (рис.2).

 

E E E E

 

θ1 θ1

n1

 

n2

 

θ2 Е

 

Е n2>n1

 

Рис. 2.

 

Обозначим напряженности электрического поля в падающей, отраженной и преломленной волнах соответственно E, E(1, E(2). Падающую волну можно представить суперпозицией двух линейно поляризованных волн с взаимно перпендикулярными плоскостями колебаний: в одной из волн плоскость колебаний совпадает с плоскостью падения, в другой – перпендикулярна ей. Напряженностям полей в таких волнах на рис. 2 соответствуют индексы ║ и . Для естественного света E = E . Амплитуды напряженностей электрического поля в отраженной ( E(1)и E (1) ) и преломленной (E(2)и E (2) ) волнах определяются формулами Френеля. Для характеристики перераспределения интенсивности падающей волны между отраженной и преломленной волнами вводят коэффициенты отражения R и пропускания T , равные отношениям интенсивностей отраженной и преломленной волн, к интенсивности падающей волны. С помощью формул Френеля можно показать, что

,

, (2)

где θ2 - угол преломления.

На рис. 3 показаны зависимости коэффициентов от угла падения θ1 световой волны на границу раздела вакуум – стекло.

Из формул (2) видно, что при θ1+ θ2=π/2 коэффициенты отражения . Следовательно, в этом случае отраженная волна линейно поляризована в плоскости, перпендикулярной плоскости падения. Проходящая волна поляризована частично; для нее .

 

Рис.3

При θ1+ θ2=π/2 соотношение (закон Снеллиуса)сводится к виду , при n1= 1 имеем

. (3)

Последнее равенство определяет угол падения θ1= θБ (рис. 3), при котором коэффициент отражения ; этот угол называют углом Брюстера.

Для преобразования линейно поляризованного света в эллиптически или циркулярно поляризованный применяют оптические элементы, называемые фазовыми пластинками. Фазовые пластинки, изготовленные из анизотропных кристаллов, характеризуются двумя направлениями (осями), лежащими в плоскости входной грани; осью наибольшей (Об) и осью наименьшей (Ом) скорости распространения света в пластине (рис. 4). Названия этих осей связаны с тем, что линейно поляризованный свет, падающий нормально входной грани пластины, распространяется в ней в зависимости от ориентации плоскости колебаний с разными скоростями vб и vм , причем vб > vм . Очевидно, фазовая пластинка не изменяет форму поляризации, если свет линейно поляризован вдоль Об или Ом . Совершенно иная ситуация имеет место, если свет поляризован под некоторым углом α к одной из этих осей, например к оси Об .



Рис. 4

Направим оси координат x и y вдоль осей Oб и Oм и фазовой пластинки ( ось z по-прежнему совпадает с направлением распространения света ) и рассмотрим напряженность E падающей волны как сумму двух векторов Ex и Ey (рис. 4). Пусть на входе в фазовую пластинку (z = 0) эти векторы изменяются по гармоническому закону с частотой ω и одинаковыми начальными фазами φx= φy= φ0 [ см. формулы (1)]. В любой момент времени мгновенные значения векторов Ex и Ey в точках оси z определяются соотношением

,

где vx и vy - фазовые скорости световых волн, поляризованных вдоль осей x и y соответственно. На выходе из фазовой пластинки ( z = d ) колебания векторов Ex и Ey определяются выражениями

;

.

При vx vy на выходе из пластинки векторы Ex и Ey колеблются с разностью фаз

, (4)

где nx и ny - показатели преломления: ; с - скорость света в вакууме.

Из формулы (4) видно, что разность фаз δ зависит от толщины d фазовой пластинки и разности показателей преломления nx - ny , которая, в свою очередь, является функцией частоты ω (дисперсия света). В то же время разность фаз δ, как было показано выше, определяет форму кривой, которую описывает конец вектора E =Ex + Ey , то есть форму поляризации световой волны. Таким образом, изменением толщины пластинки и отношения амплитуд векторов Ex и Ey можно получить свет с любой наперед заданной формой поляризации.

Например, для света с длиной волны λ = 0,63 мкм фазовая пластинка из кристаллического кварца имеет nx = 1,543, ny = 1,552. При толщине пластинки d = 17,5 мкм разность фаз δ равна π/2 рад. Если, кроме того, амплитуды векторов Ex и Ey равны ( для этого фазовую пластинку поворачивают вокруг оси z таким образом, чтобы азимут поляризации падающего света составлял угол 450 с одной из осей пластинки), то на выходе из пластинки свет циркулярно поляризован.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...