Главная Обратная связь

Дисциплины:






Агрегатные общие индексы



Объективность общим индексам придает их запись в агрегатном ви­де, предложенная Ласпейресом и Пааше.

Агрегатный общий индекс Ласпейреса для количества товаров как первого фактора выручки определяется по формуле

= (12)

Аналогично можно записать агрегатный общий индекс Ласпейреса для цен как первого фактора выручки, то есть

= (13)

В формулах Ласпейреса знаменатели по существу одинаковые, представляя собой выручку базисного периода, а числители разные. В формуле (12) это отчетная выручка в базисных ценах (количесгво товаров отчетное, а цены — базисные), в формуле (13) наоборот — базисная выручка в отчетных ценах (цены отчетные, а количество товаров — ба­зисное).

Агрегатные общие индексы Пааше применяются ко вторым факто­рам мультипликативных моделей. Поэтому такой индекс для цен как второго фактора выручки определяется по формуле

= (14)

Аналогично можно записать агрегатный общий индекс Пааше для количества товаров как второго фактора выручки, то есть

= (15)

В формулах Пааше числители по существу одинаковые, представляя собой выручку отчетного периода, а знаменатели аналогичны числите­лям формул Ласпейреса.

Для облегчения запоминания студентами формул Ласпейреса и Пааше предлагаю обратить внимание на букву «ш» в слове «Пааше», которая напоминает «111» - так обозначены отчетные периоды в общей формуле (две единицы – в числителе, а одна – в знаменателе). В формуле же Ласпейреса – три нуля (наоборот к формуле Пааше).

Произведения количественного индекса Ласпейреса и ценового ин­декса Пааше, а также ценового индекса Ласпейреса и количественного индекса Пааше дают общий индекс выручки

. (16)

Однако вид этих формул показывает, что однофакторные индексы Ласпейреса и Пааше не равны между собой. То есть не равными явля­ются количественные индексы Ласпейреса и Пааше и ценовые. Американский экономист Гершенкрон обширными расчетами установил, что по одному и тому же фактору индекс Ласпейреса обычно больше индекса Пааше и это открытие названо эффектом Гершенкрона.

Но в статистике должно быть одно значение индекса, поэтому американский экономист Фишер предложил применять среднюю геометри­ческую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:

для количества товаров = (17)

для цен = (18)





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...