Главная Обратная связь

Дисциплины:






Принципы синхронизации в ЦСП



Методические указания к семинару (практ. зан. №4

Тема:Анализ схем ЦСПдля местных и внутризоновых сетей

Цель занятия:

1.Изучить структурную схему оконечной станции многоканальной СП с ИКМ, назначение блоков и модулей станции, принцип группообразования и прохождение сигналов в тракте передачи и приема.

Изучаемые вопросы:

1. Структурная схема оконечной станции.

- назначение элементов тракта передачи;

- назначение элементов тракта приема;

- назначение элементов генераторного оборудование;

- назначение элементов системы синхронизации;

- прохождение сигналов по структурной схеме и временные диаграммы сигналов на выходе блоков передающего и приемного трактов.

2. Принципы синхронизации в ЦСП:.

- виды синхронизации и их определение тактовая. Цикловая и сверхцикловая синхронизация.

- структурная схема тактовой синхронизации и принцип выделения тактовой частоты.

- Структурная схема, назначение элементов и принцип работы приемника синхросигналов,

Методические указания.

Изучить, накануне практического занятия, отрабатываемые вопросы и уяснить цели и задание. По указанной литературе изучить отрабатываемые вопросы и быть готовыми для представление краткого письменного (устного) ответа на поставленные вопросы. В ответах должны раскрываться основная суть вопроса, без излишних подробностей. Для экономии времени нецелесообразно перечерчивать схемы (за исключением простых схем) и графики, а использовать раздаточный материал. При отработке вопросов особое внимание обратить на принцип группообразование и изменение формы сигналов при прохождении по тракту передачи и приема. Необходимо определить роль генераторного оборудование и систем синхронизации и СУВ. Произвести сравнительный анализ характеристик различных ЦСП.

 

Необходимая литература:

  1. Баева Н.Н и. др. Многоканальная электросвязь и РРЛ.- М: Радио и связь. 1988 Стр. 214-235, 282-299.

2. Иванов В.И., Гордиенко В.Н., Попов Г.Н. и др. Цифровые и аналоговые системы передачи - М.; Радио и связь,1995.

3. Есназаров Е.К. Конспект лекции по дисциплине МТС. Каз. НУ 2014 г

  1. Методические указания к Пр. зан. №4

 

Ст преподаватель кафедры Е.К. Есназаров

 

Учебные материалы

Цикловая синхронизация осуществляется следующим образом. На передаю-щей станции в состав группового цифрового сигнала в начале цикла передачи (обычно в КИ0) вводится цикловой син­хросигнал, а на приемной станции устанавливается приемник син­хросигнала (ПСС), который выделяет цикловой синхросигнал из группового цифрового сигнала и тем самым определяет начало цикла передачи. Очевидно, что цикловой синхросигнал должен обладать определенными отличительными признаками, в качестве которых используется заранее определенная и неизменная струк­тура синхросигнала (например, 0011011 в ЦСП ИКМ-30), а так­же периодичность следования синхросигнала на определенных позициях цикла (например, в КИ0 через цикл в ЦСП ИКМ-30). Групповой цифровой сигнал в силу случайного характера инфор­мационных сигналов такими свойствами не обладает.



Время восстановления синхронизма должно быть минималь­ным (обычно не более нескольких миллисекунд), так как помимо того, что сбой синхронизма приводит к потере связи, т. е. к ухуд­шению качества передачи, возможны нарушения работы каналов передачи СУВ, что может, например, привести к разъединению абонентов.

Рассмотрим принципы работы ПСС со скользящим поиском (рис. 5.37), который выполняет следующие основные функции: установление синхронизма после включения системы в работу; контроль за синхронным состоянием системы в процессе работы; обнаружение сбоя синхронизма; восстановление состояния син­хронизма после каждого сбоя.

Основными узлами ПСС являются опознаватель, анализатор и решающее устройство.

Опознаватель содержит регистр сдвига, число разрядов в ко­тором совпадает с числом символов в синхросигнале, и дешифратор (Дш), настроенный на дешифрацию синхросигнала заданной структуры.

Как только в регистре сдвига, на вход которого по­ступает групповой цифровой сигнал, оказывается записанной ко­довая комбинация, совпадающая по структуре с принятой струк­турой синхросигнала, на выходе опознавателя появляется импульс.

Анализатор с помощью контрольного сигнала, поступающего от ГОпр, проверяет соответствие момента появления импульса на выходе опознавателя ожидаемому моменту появления синхросиг­нала, т. е. осуществляется проверка по периоду следования и вре­мени появления синхросигнала.

Появление импульса на выходе схемы запрета означает отсут­ствие синхросигнала (сигнала с выхода Дш) в момент поступле­ния контрольного импульса от ГОпр, а появление импульса на вы­ходе схемы hi означает совпадение по времени синхросигнала и контрольного сигнала от ГОпр.

Решающее устройство оценивает выходные сигналы анализа­тора по определенному критерию, принимает решение о наличии или отсутствии синхронизма и управляет работой ГОПр в процес­се вхождения в синхронизм. Решающее устройство содержит на­копитель по выходу из синхронизма и накопитель по входу в син­хронизм, представляющие собой двоичные счетчики со сбросом.

Накопитель по входу в синхронизм, вход которого соединен с выходом схемы И], обеспечивает защиту ПСС от ложного вхож­дения в синхронизм в режиме поиска синхросигнала, когда на вход опознавателя поступают случайные комбинации цифрового группового сигнала, совпадающие по структуре с синхросигналрм. Обычно емкость накопителя по входу в синхронизм п\ составляет 2—3 разряда.

Накопитель по выходу из синхронизма, вход которого соеди­нен с выходом схемы запрета анализатора, обеспечивает защиту от ложного выхода из состояния синхронизма, когда из-за ошибок в линейном тракте или по другим причинам происходит кратко­временное изменение структуры синхросигнала. Обычно емкость накопителя по выходу из синхронизма п2 составляет 4—6 разря­дов.

Рассмотрим работу приемника синхросигнала. Если система находится в режиме синхронизма, то накопитель по входу в син­хронизм будет заполнен, поскольку на выходе схемы hi регуляр­но появляются импульсы, подтверждающие совпадение моментов поступления импульсов с выхода опознавателя и контрольных импульсов от ГОпр. Накопитель по выходу из синхронизма опусто­шается. Импульсы на выходе опознавателя, соответствующие слу­чайным комбинациям со структурой, аналогичной структуре син­хросигнала, Не влияют на работу ПСС, так как не совпадают по времени с контрольными импульсами от ГОпр.

Если, например, в результате ошибок в одном из циклов будет искажен синхросигнал, на выходе опознавателя в нужный момент импульс не появится, в результате чего с выхода схемы запрета в накопитель по выходу из синхронизма поступит импульс. Однако схема остается в прежнем состоянии, поддерживая ранее уста­новленное состояние синхронизма. Только в том случае, если бу­дут искажены п2 синхросигналов подряд, т. е. когда полностью заполнится накопитель по выходу из синхронизма, будет принято решение о выходе системы из состояния синхронизма. При этом, если накопитель по входу в синхронизм будет заполнен раньше накопителя по выходу из синхронизма, последний будет сбрасы­ваться' в исходное нулевое положение. Таким образом обеспечива­ется защита от ложного выхода из синхронизма при кратковре­менных искажениях синхросигнала.

При длительном нарушении синхронизма накопитель по выхо­ду из синхронизма оказывается заполненным и принимается ре­шение о действительном выходе системы из состояния синхрониз­ма. Начинается поиск нового состояния синхронизма. В этом случае первый же импульс от опознавателя через открытый эле­мент переводит ГОцР и накопитель по входу в синхронизм в исходное нулевое состояние, а накопитель по выходу из синхро­низма — в состояние, соответствующее импульсу, т. е. уменьшает его содержимое на 1. Если в следующем; цикле момен­ты появле-ния импульса на выходе опознавателя и импульса от не совпадают (это означает что синхрогруппа оказалась ложной), то вновь заполняется накопитель по выходу из синхро­низма, открывается схема и очередной импульс от опознав/ате-ля вновь устанавливает и накопители в указанное ранее со­стояние.

Таким образом обеспечивается защита от ложного уста­новления синхронизма. Этот процесс продолжается до тех пор, пока на выходе опознавателя не появляется импульс, соответст­вующий истинному синхросигналу. В этом случае через щ цик­лов заполняется накопитель по входу в синхронизм, сбрасывается в нулевое состояние накопитель по входу в синхронизм, сбрасы­вается в нулевое состояние накопитель по выходу из синхрониз­ма, схема И2 закрывается, т. е. устанавливается новое состояние синхронизма.

Из анализа работы ПСС следует, что процесс восстановления синхронизма содержит три последовательно выполняемых этапа: обнаружение выхода из синхронизма, поиск синхросигнала и под­тверждение нового состояния синхронизма. Соответственно время восстановления синхронизма где —время заполнения накопителя по выходу из синхронизма; —время поиска синхросигнала; —время заполнения накопителя по входу в синхронизм.

Недостатки рассмотренного способа построения ПСС заклю­чаются в следующем.

Во-первых, поиск синхросигнала начинается только после окон­чания процесса заполнения накопителя по выходу из синхрониз­ма, т. е. через что приводит к увеличению времени восста­новления синхронизма

Во-вторых, емкости накопителей по входу в синхронизм и вы­ходу из синхронизма («i и п2) фиксированы, что не позволяет добиваться оптимальных соотношений между временем восста­новления синхронизма и помехоустойчивостью.

Первый недостаток может быть устранен, если процессы на­копления по выходу из синхронизма и поиска синхросигнала осу­ществлять параллельно. Для этого схему ПСС, приведенную на рис. 5.37, необходимо дополнить схемой поиска синхросигнала, содержащей собственные анализатор и решающее устройство. Эта схема начинает работать при появлении первого же импульса на входе накопителя по выходу из синхронизма, т. е. не дожидаясь его заполнения, и осуществляет поиск нового состояния синхро­низма. Генераторное оборудование будет сохранять предыдущее состояние до тех пор, пока не будет зафиксировано новое состоя­ние синхронизма.

Второй недостаток можег быть устранен, если емкости нако­пителей («! и п2)--сделать величинами переменными, зависящими от вероятности ошибок в линейном тракте. При понижении веро­ятности ошибок уменьшается емкость накопителя по выходу из синхронизма, а при увеличении вероятности ошибок уменьшается емкость накопителя по входу в синхронизм. Такие приемники синхросигнала называются адаптивными и широко применя­ются в высокоскоростных отечественных ЦСП.

Работа системы сверхцикловой синхронизации, как и работа системы цикловой синхронизации, основана на передаче сверх­циклового синхросигнала (СЦС) в одном из циклов сверхцикла (обычно в ЦО). Работа приемника сверхциклового синхросигна­ла практически не отличается от работы приемника циклового синхросигнала. При этом приемник сверхциклового синхросигнала работает в несколько облегченном режиме, так как установление сверхциклового синхронизма осуществляется после установления синхронизации по циклам, т. е. когда определены границы циклов.

Принципы синхронизации в ЦСП

В ЦСП с ВРК правильное восстановление исходных сигналов на приеме возможно только при синхронной и синфазной работе генераторного оборудования на передающей и приемной станци­ях (ГОпер и ГОпр). Учитывая принципы формирования цифрового группового сигнала, рассмотренные выше, для нормальной работы ЦСП должны быть обеспечены следующие виды синхронизации: тактовая, цикловая и сверхцикловая.

Тактовая синхронизация обеспечивает равенство ско­ростей обработки цифровых сигналов в линейных и станционных регенераторах, кодеках и других устройствах ЦСП, осуществляю­щих обработку сигнала с тактовой частотой /ч.

Цикловая синхронизация обеспечивает правильное разделение и декодирование кодовых групп цифрового сигнала и распределение декодированных отсчетов по соответствующим ка­налам в приемной части аппаратуры.

Сверхцикловая синхронизация обеспечивает на приеме правильное распределение СУВ по соответствующим те­лефонным каналам. Нарушение хотя бы одного из видов синхронизации приводит к потере связи по всем каналам ЦСП.

На рис. 5.34, а показано временное распределение циклов в сверхцикле, формируемом на передаче. При наличии тактовой, цикловой и сверхцикловой синхронизации на приеме временное расположение циклов и сверхциклов, определяемое генераторным оборудованием приема, соответствует расположению на передаче, т. е. не изменяется.

При этом осуществляется правильное разде­ление информационных сигналов и СУВ по соответствующим те­лефонным каналам. Рассмотрим случаи нарушения цикловой и сверхцикловой синхронизации (при наличии тактовой).

При нарушении цикловой синхронизации (рис. 5.34, б) грани­цы циклов на приеме произвольно смещаются по отношению к границам циклов группового сигнала, поступающего на вход при­емного оборудования (рис. 5.34, а).

Это приводит к неправильно­му разделению канальных сигналов и СУВ, т.е. к потере связи по всем каналам. В частном случае (если вре-менной сдвиг ΔT окажется кратным Tки) может произойти переадресация инфор­мации, при которой на выход i-го канала будет поступать инфор­мация, относящаяся к некоторому j-му каналу. Очевидно, что на­рушение цикловой синхронизации неизбежно приведет к наруше­нию сверхцикловой синхронизации.

При нарушении сверхцикловой синхронизации, но сохранении тактовой и цикловой границы циклов на приеме и передаче совпа­дают, но нарушается порядок счета циклов в сверхцикле, т. е. на приеме смещаются границы сверхцикла (рис. 5.34, в). Это приве­дет на приеме к неправильному распределению СУВ, передавае­мых в определенном порядке в сверхцикле, между телефонными каналами.

Поскольку СУВ представляет собой набор сигналов, управляющих работой приборов АТС (набор номера, ответ, от­бой, разъединение и др.), нарушение сверхцикловой синхронизации также приведет к потере связи по всем каналам. В частных слу­чаях могут быть установлены случайные соединения абонентов, разрушены ранее установленные связи и т. п.

Очевидно, что нарушение тактовой синхронизации сделает не­возможным установление цикловой и сверхцикловой синхрониза­ции, так как обработка символов цифрового группового сигнала с частотой, отличной от тактовой FT, приведет к недопустимому возрастанию числа ошибок.

Система тактовой синхронизации включает в себя (рис. 5.35) задающий генератор. (ЗГ), входящий в состав ГО передающего оборудования оконеч-ной станции (Пер) и вырабатывающий им­пульсную последовательность с тактовой частотой FT, и устройст­ва выделения тактовой частоты (ВТЧ), устанавливаемые в том оборудовании, где осуществляется обработка сигнала с частотой FT в линейных регенераторах (ЛР), приемном оборудовании (Пр) оконечной станции и др. (см. рис. 5.31).

Сущность одного из наиболее распространенных методов вы­деления тактовой частоты состоит в том, что из спектра группо­вого цифрового сигнала с помощью ВТЧ, содержащего высоко­добротные резонансные контуры, фильтры-выделители или изби­рательные усилители, выделяется тактовая частота. Энергетический спектр

случайной униполярной последовательности импуль­сов, т. е. спектр униполярного цифрового сигнала, содержит как непрерывную GH(f), так и дискретную Сд(f) составляющую.

На рис. 5.36 приведен энергетический спектр униполярного цифрово­го сигнала при скважности следования импульсов, равной 2, и по­казано, что с помощью фильтра-выделителя можно выделить пер­вую гармонику частоты следования импульсов, т. е. тактовую частоту FT, являющуюся одной из состав-ляющих дискретной час­ти спектра.

Такой способ выделения тактовой частоты называется спосо­бом пассивной фильтрации. Этот способ ха­рактеризуется простотой реализации ВТЧ, но имеет существенный недостаток: стабильность выделения тактовой частоты зависит от стабильности параметров фильтра-выделителя и структуры циф­рового сигнала.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...