Главная Обратная связь

Дисциплины:






где Е – единичная матрица того же порядка, что и матрицы А и В.



Теорема.Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы её определитель был отличен от нуля.

Матрица, обратная к А, обозначается через А-1, так что В= А-1. Для матрицы А обратная ей матрица А-1 определяется однозначно.

Справедливы следующие равенства:

1) D(А-1)=(DА)-1;

2) -1)-1;

3) 1А2)-12-1А1-1;

4) Т)-1=(А-1)Т.

Существую несколько способов нахождения обратной матрицы. Рассмотрим один из них – нахождение обратной матрицы путём вычисления алгебраических дополнений. Заключается он в следующем:

пусть нам дана матрица А, имеющая следующий вид:

Предположим, что DА¹0. Построим следующую матрицу С следующим образом:

где Аij – алгебраическое дополнение элемента аij в определителе матрицы А. Очевидно, что для построения матрицы С необходимо сначала заменить элементы матрицы А соответствующими им алгебраическими дополнениями, а затем полученную матрицу транспонировать.

Полученная таким образом матрица С называется присоединённой к матрице А, или союзной с А.

Чтобы получить матрицу А-1, обратную для матрицы А, необходимо каждый элемент присоединённой матрицы С поделить на , т.е. матрица А-1 будет иметь следующий вид:

 

Пусть матрица А, имеет следующий вид:

Чтобы найти матрицу А-1, обратную для матрицы А, необходимо:

- вычислить определитель матрицы (DА= -3);

- найти алгебраические дополнения элементов аij в определителе матрицы А:

- составить присоединённую матрицу С по формуле (2);

- разделить все элементы матрицы С на .

 

65. Правило Крамера для решения системы п линейных уравнений с п неизвестными.

Составим определитель матрицы систе­мы А:

 

 

который называется также определителем системы. Заменим в этом определителе j-й столбец на столбец свободных членов В, т.е. получим этой заменой другой определитель, который обозначим Δj:

 

Пример 1. Найти решение системы уравнений

 

 

Решение. Составим и вычислим определители системы Δ и Δj (j = x, y, z):

 

 

Определитель системы отличен от нуля, стало быть, она имеет единственное решение, которое вычисляется по форму­лам (15.6):

 

66. Декартова система координат. Прямая линия. Общее уравнение прямой линии на плоскости.

ДЕКА́РТОВА СИСТЕ́МА КООРДИНА́Т, прямолинейная система координат на плоскости или в пространстве (обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям). Названа по имени Р. Декарта (см. ДЕКАРТ Рене).
Декарт впервые ввел координатную систему, которая существенно отличалась от общепринятой в наши дни. Для задания декартовой прямоугольной системы координат выбирают взаимно перпендикулярные прямые, называемые осями. Точка пересечения осей O называется началом координат. На каждой оси задается положительное направление и выбирается единица масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.



Общее уравнение прямой линии на плоскости в декартовых координатах:

где A, B и C — произвольные постоянные, причем постоянные A и B не равны нулю одновременно. Вектор с координатами (A,B) называется нормальным вектором и он перпендикулярен прямой. Вектор с координатами (-B,A) или (B,-A) называется направляющим вектором.

При C = 0 прямая проходит через начало координат. Также уравнение можно переписать в виде :

 

67. Уравнение прямой с угловым коэффициентом; уравнение прямой в отрезках; уравнение прямой, проходящей через две данные (несовпадающие) точки.





sdamzavas.net - 2020 год. Все права принадлежат их авторам! В случае нарушение авторского права, обращайтесь по форме обратной связи...